Development of complex investigation of extrudats using acoustic echolocation method

R. Bernatovičiutė¹, G. Judoikiene¹, V. Minois³, A. Petrauska³

1) Kaunas University of Technology, ¹Department of Food Technology
Radvilečio pl. 19, LT-50254 Kaunas, Lithuania
E-mail: rasas@nevezis.lt
2) Kaunas University of Technology, ²Department of Physics,
3) Prof. K. Baršauskas Ultrasound Research Institute
Studentu g. 50, LT-51370, Kaunas, Lithuania

Abstract

The swelling parameters (swelling dynamics – Vd and degree of swelling – V) of rye in a composition with buckwheat were investigated by an acoustic echolocation method. The new provisions production experiment was performed with single and twin screw extruders. The obtained experimental results are presented.

The determined swelling parameters (Vd and V) of extrudates have a good correlation with parameters, analyzed by the instrumental method (expansion index, specific density, mechanical strength of the product and a mean diameter of pores). The experiment performed with both extruders proved that varied buckwheat percentage in rye composition (0 till 40 %) allows us to obtain products with various quality of texture – from snacks to breakfast cereals.

Analysis of solubility and water absorption of non – pores structures of extrudates was done using traditional methods additionally. It proved results obtained by acoustic echolocation method, that during extrusion rye starch granules tend to be more degraded and depolymerized in comparison with buckwheat. Rye extrudates like snacks differed by intensive swelling dynamic and their structure in time of 60 seconds was collapsed, taking volume of water about 2.9 ml. Extrudates with buckwheat flour differently from pure rye have swelling property and make more equal structure. Analyzed extrudates with the highest amount of buckwheat flour like breakfast cereals were observed as having a long unbroken not interrupted swelling process, keeping structure during measurement time. This sort of products had a highest degree of swelling (V – 5.4 ml (h²o)) and the structure looked most uniform.

This means that acoustic echolocation method gives a complex information both about the texture of end products and the processes during extrusion. This method can be implemented in practice to classify extrudates to different quality grades products.

Keywords: acoustic echolocation method, swelling parameters of extrudates, physical-mechanical properties of extrudates, structure of extrudates, cereals products, complex information about texture of extrudates.

Introduction

In investigations of high quality provisions [1, 2], e.g. rye and buckwheat extrudats having porous structure, they use at this time instrumental methods [3] shown in Table 1. These methods allow us to obtain information about porosity and other physical-mechanical properties of products. During extrusion in comparison with a usual baking of bread specific technological processes take place. Majority of components containing starch during heating and mechanical processing at a high temperature under effect of pressure and steam added to the mass change consistencies and become similar to the dough that swells out during extrusion [1, 2]. It gives specific properties of texture which are appreciated on swelling index, specific density and resistance against force of pressure.

In analysis of separate kinds of extrudats (light snacks or dry breakfast) enriched information about texture of product is a problem. For light snacks the main property of texture is cracky surface and volume and it is associated with resistance in mastication, while for the second kind of extrudats – the dry breakfast, which is used with milk it is essentially important to evaluate the moisten and swelling properties of the products surface. Swelling properties of extrudats usually are evaluated by contact methods after the solubility of mass and after water absorption of porousless extrudats up to time. Index of solubility gives information about degradation of starch granulas when the water absorbtion index is associated with the property of starch granulas to swell [4]. For increased amount of information about the texture of porous provision, e.g. crackers and ring-shaped rolls we used echolocation method [3, 5].

<table>
<thead>
<tr>
<th>The methods for high quality provisions investigation and properties of these methods</th>
<th>Destructive</th>
<th>Non-destructive</th>
<th>Slow analysis</th>
<th>Rapide analysis</th>
<th>Dangerous for personal health</th>
<th>Negative influence of other properties of the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Photographical</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Electrical</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mechanical</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Radioisotope</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X-ray</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infrared</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acoustic</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
The main point of this method is employment of a short distance echolocator for non-contact measurement of samples swelling properties. Usage of the acoustic echolocation method enables to carry out measurements of water absorption without taking out the sample from a reservoir. The sample does not to disintegrate during measurement process and obtained results are precise enough. This feature emphasizes usefully the acoustic echolocation method in comparison with other mechanical methods. Other non-contact precise water level meters can be used instead of ultrasonic water level meter. It is proven that the swelling process dynamics depends on the peculiarities of raw materials used for cereals [6-13]. During the swelling the extrudats can be characterized as a highly hidrofillic colloidal systems [7, 9] formed from the massive molecules of polymers from a cereals raw materials.

For production of extrudats usually maize, wheat and rice are used, starch of which contains greater amount of amylose [8, 11, 13]. Amylose having a line structure differently from amilopektyn is easier to orientate during extrusion under technological influence. This enables formation of a porous structure. Other grain, e.g. rye, barley, oat, buckwheat have a smaller amount of amylose. Extrudats of denser structure are produced from them. Under point of view of a food quality they are very valuable raw materials. It is recommended to use them as widely as possible for new provisions production [8, 9, 11].

The purpose of this investigation is to evaluate influence of nontraditional grain raw material – rye in combination with buckwheat - on extrudats swelling properties using the acoustic echolocation method.

Methods of investigations

Extrudats were produced using a single screw extruder (Schaff Technologie GmBH) at the joint stock company “Naujasis Nevezis” (Lithuania) and the twin screw conoidal CM45-F type extruder (Cincinnati Milacron, Wien, Austria) at Wien nature stock and applied sciences university production base (Austria).

During production of samples by the single extruder the velocity of screw was changed (350, 410, 470 min⁻¹) when dose of friable products and temperature in separate zones of extruder (45/65/135 °C) was stable in investigations.

During production of samples by the twin screw extruder the screws of several steps were tested: the bigger step (DŽ) was SK 1552-300 B and the smaller step (MŽ) was SK1552-300. Additionally the velocities of screws were changed to 60 and 80 min⁻¹. Other parameters of the extruder: doses of friable products and temperatures in separate zones of extruder (80/110/140/160 °C) were stable.

In both cases (by using the single and the twin screw extruders) the same prescription was used (Table 2).

Table 2. Prescription of extrudats composition, %

<table>
<thead>
<tr>
<th>Rye flour, %</th>
<th>Buckwheat flour, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Pores filling process takes a time. The liquid level in the measurement vessel changes after the sample is immersed in liquid (Fig. 1). These changes depend on a materials porosity. The results of application of this method to investigation of porous food materials were described by us in [3, 5, 14-22].

The volume ΔVₓ of the absorbed liquid may be evaluated by equation:

\[ΔVₓ = S \cdot Δl \] \hspace{1cm} (1)

Here S is the area of the liquid surface, Δl is change of the liquid level.

The significant traits of the liquid absorption phenomenon are speed of absorption and its change till all holes will be filled. As we can see from Eq.1 the dependence between changes of volume and liquid level is rectilinear if we use vertical cylindrical vessels and area of the liquid surface does not change. We can obtain data about changes of speed of absorption from measurements of level changes. After investigation of functions

\[dl/dt = f₁(t) \text{ and } dV/dt = f₂(t) \] \hspace{1cm} (2)

we can decide about usability of the porous material for a chosen purpose.

Two swelling parameters were investigated by the non-contact ultrasonic level meter: dynamics of swelling Vd and swelling degree V. In addition the relation between the swelling parameter (Vd and V) and texture parameters measured by instrumental methods such as resistance force to the pressure, volume increase index, specific density and average diameter of pores was evaluated. The resistance against the acting pressure force (F) was evaluated using the Stevens-LFRA texture analyzer (USA), by using 10mm diameter plunger [11, 12]. Structure of extrudats (geometrical parameters of pores) was investigated using

![Diagram of measurement equipment using ultrasonic echolocation meter](image-url)
the SZ40-Sterio-Zoom type image analyzer. Additionally swelling properties of finished extrudats were evaluated by porousless mass solubility and water absorption by the Anderson method [12].

Data of investigations were processed using mathematical statistics method „Sistema Statgraphics 5.0“ [23]. The values of parameters point values, standard evaluation errors and confidence intervals at the importance level of 0.05 were calculated.

Results and discussion

The influence of kind of raw materials on the swelling parameters Vd (swelling dynamics) and V (swelling degree) was evaluated from the point of view of technological factors. The measurements were carried out according to the diagram in Fig.1.

Influence of grain raw material on swelling properties (e.g. Vd) is shown ion Fig.2.

Investigation showed that by changing mass composition, i.e. by increasing the buckwheat flour percentage in the prescription the swelling dynamics (Vd) decreases.

The influence of the velocity of screw was analyzed by producing extrudats using both the single screw and the twin screw extruders. Changing of screw velocities in the single screw case from 350 min⁻¹ till 470 min⁻¹ increases the dynamics of water absorption and amount of the absorbed water in products (Fig. 3). This tendency was observed in all production cases however in different degree.

The biggest influence of this parameter was revealed in the single screw extruder case in production of rye extrudats: by increasing velocity of the single screw extruder from 350 min⁻¹ till 470 min⁻¹ the measured values of Vd and V increased 4.6. Meanwhile in the case of compositions with various buckwheat flour percentage no clear dependence on the screw velocity was established.

Extrudats were divided in to three groups – from light snacks till dry breakfast, accordingly depending on the raw material used in production (Fig.4).

The products made from pure rye flour were attached to the first group of extrudats. Intensive swelling dynamics is characteristic for them. Mathematically it is described by a rectilinear dependency. Structure of these products was fully destroyed during 1 min by absorbing 2.9 ml of water. The smallest amount of small pores <20μm and the biggest change of diameters of pores, i.e. from 20 till 401μm and more what is showing nonuniform structure of them, is characteristic for the structure of rye extrudats.

These products were characterized by the highest cracking, lowest hardness and were easy for mastication during investigation of products on quality by senses.

The groups of extrudats with different swelling properties were obtained by changing composition of mass, i.e. by increasing amount of buckwheat flour in the prescription from 20 till 40%.

The swelling process of the second group of extrudats made with the biggest amount of buckwheat flour in the composition (about 40% of the amount of the rye flour) was uniform, long time, without brakes. The dynamics of swelling is described by a complex function of dependancy. The extrudats of this group kept their structure the longest time (11 min) during the swelling process. The velocity of water absorption was the lowest – 0.5ml/min. The most uniform structure is characteristic for this group with the greatest number of the smallest pores (221…240 μm). According to quality demands the good cracking, optimal hardness, however a bigger resistance in mastication were characteristic for these extrudats.

Addition of buckwheat flour gave the pleasant intensive smell and taste.

The products with the intermediate properties of light snacks and dry breakfast were ascribed to the third group. The swelling dynamics is described by a composed dependency. Two stages of swelling process can be marked out: during the first stage (till 1.7min) water was absorbed by the rectilinear dependency, and during the second stage (till 5.7 min) – by the composite dependency. The dynamics of swelling of this group was 3.7 times as higher as dynamics of the second group, however degree of swelling was 1.5 times higher. They were made with a smaller amount of buckwheat flour in comparison with dry breakfast (20% of the rye flour mass). The bigger number of smaller pores (321…340 μm) (1.6 times) and smaller
number of bigger pores (2 times) was found out in their structure in comparison with rye extrudats. According to quality demands extrudats with 20 % of buckwheat flour addition were sufficiently cracking however harder than products of the first group. They were easy for nastication however for full mastication process the longer time was necessary.

Influence of the extruder type was investigated during analysis of another parameter of porous structures: the amount of absorbed water using diagram of measurement in Fig.1. It was established that after change of mass composition in the single screw extruder this parameter increased and in the twin screws extruder this parameter decreased.

The velocity of screw influences forming of porous structures in rye matrices. The index of solubility increased by 69% and the water absorption index decreased in average by 14% (Fig. 5) in rye extrudats by increasing velocity of screw from 60 min\(^{-1}\) till 80 min\(^{-1}\).

This can be explained by peculiarities of mechanical mass processing in the twin screws extruder. This mechanism has additional knead elements which process the mass longer and more intensive during extrusion [1, 2].

The influence of screw step on swelling parameters (in twin screw extruder) was established also. The higher dynamics of swelling and bigger amount of absorbed water was established for extrudats made using a small step (MŽ) screw than for extrudats made using a big step (DŽ) screw. This tendency was more evident in investigations of rye extrudats than in investigations of extrudats with addition of buckwheat flour as results show in Fig. 5. This was confirmed by results in Fig. 6. The rye extrudats made using the MŽ screw (velocity 80 min\(^{-1}\)) in comparison with the DŽ screw distinguished themselves by the 43.2 % higher solubility index.

Results of investigations show that increase of the solubility index is related to decrease of water absorption index. This coincides with data published by other authors [7].

Fig. 4. The extrudats swelling dynamics dependence on raw material composition; groups of extrudats made from different grain raw materials: 1 is from rye flour; 2 is from 80% of the rye flour and 20% of the buckwheat flour, 3 is from 60% of the rye flour end 40% of the buckwheat flour

Fig. 5. Influence of twin screws velocity on the swelling parameters: on dynamics of water absorption (Vd)

Table 3. Characteristics of extrudats swelling

<table>
<thead>
<tr>
<th>Group of extrudats on the swelling</th>
<th>Dynamics of swelling, ml/min</th>
<th>Coefficients of regression equation</th>
<th>(R^2)</th>
<th>Regression equations</th>
<th>Degree of swelling, ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.93</td>
<td>-0.0275</td>
<td>3.0925</td>
<td>0.994</td>
<td>y = a+bx</td>
</tr>
<tr>
<td>2-1</td>
<td>0.79</td>
<td>0.1469</td>
<td>0.2511</td>
<td>0.999</td>
<td>y = a+bx</td>
</tr>
<tr>
<td>2-2</td>
<td>1.3626</td>
<td>0.6575</td>
<td>-0.0199</td>
<td>0.999</td>
<td>y = a+bx-cx^2</td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
<td>0.0539</td>
<td>0.7471</td>
<td>0.999</td>
<td>y = a+bx-cx^2</td>
</tr>
</tbody>
</table>
Fig. 6. Influence of twin screws velocity on swelling parameters: on amount of the absorbed water (V)

Conclusions

The results of investigations obtained by the acoustic echolocation method confirm strong correlation relation between swelling parameters – swelling dynamics (Vd) and swelling degree (V) values and parameters of extrudates quality established by instrumental methods (swelling index, specific density, resistance to acting pressure force, average diameter of pores).

By changing buckwheat percentage in rye mixes (from 0 % till 40 %) irrespective of the type of extruder it is possible to obtain products with various properties of a texture – from light snacks till dry breakfast.

Rye extrudates with properties of light snacks reveal themselves by intensive swelling dynamics. Their structure was destroyed in 1 min after absorption of the smallest amount of water (V=2.9 ml).

For extrudats with addition of buckwheat flour differently as in case from pure rye flour it is characteristic to swell and form more uniform structure of product.

The swelling process of extrudats with the biggest amount of buckwheat flour (corresponding to dry breakfast) was going on uniformly, was of long duration and without brakes, structure destroys. Products of this kind revealed themselves by the biggest swelling degree (V=5.4 ml) and uniform structure.

It can be concluded that the acoustic echolocation method is suitable for evaluation of depolimerization of rye starch granulas during extrusion, because the results obtained using the acoustic echolocation method were confirmed by results of extrudats mass solubility and water absorption obtained by traditional methods. Thus, the properties of extrudats swelling evaluated by the acoustic echolocation method give an additional information about processes that happened during extrusion and peculiarities of finished products. In production practice this method can be successfully applied for extrudats distribution in grades according to quality.

References
R. Bernatovičiūtė, G. Juodeikienė, V. Minialga, A. Petrauskas

Kompleksinis ekstrudatų tyrimas akustiniu aidolokacinio metodu

Reziumė

Nustatyta, kad tirtieji ekstrudatų brinkumo parametrai (Vd ir V) gerai susiejami su rodikliais, vertintais instrumentiniais metodais (išsipūtimo indeksu, specifinio tankio, pasipriešinimu veikiančiai slėgio įtakos, vidutinio poro skersmeniu). Eksperimentai, atlikti su dviejų ekstruderų tipais įrodė, kad keičiant grikių kiekių rugių mišiniuose (0% ir 40%) galima gauti įvairių tekstūros ir išbrinkimo laipsnių. Ekstrudatams su didžiausiu grikinių miltų kiekiu (atitinkantys sausus pusryčius) būdinga griežtai tai, kad pertrūkia griežtai tai, kad pertrūkia formulacija, matavimo metu jų struktūra nesužeista. Be to, šios rūšies produktai išsiskyrë didžiausiu išbrinkimo laipsniu (V – 5,4 ml) ir struktūros vienatyškumu.

Tyrimais įrodyta, kad akustinis aidolokacinis metodas suteikia kompleksinę informaciją tiek apie akustinių tekstūrų, tiek apie procesų, vykstančių ekstruzijos metu, ir gali būti rekomenduojamas taikyti praktikoje gaminant geresnės mitybinės vertės produktus ir suskirstant juos į rūšis pagal kokybę.

Pateikta spaudai 2004 06 12