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Abstract 

In this article, application of various methods for evaluating and measuring porous food structures are reviewed. It is 
noted, that ultrasonic vibrations and waves, due to their physical properties and wide frequency interval, can successfully 
be applied when analyzing porous food structures. These methods have a lot of advantages when comparing them with 
other non-acoustic measurement methods. We examine the application of the proposed acoustic echolocation method 
when evaluating porous food structures directly and indirectly. The possibilities to apply Lamb waves for evaluation of 
porous structures are also examined. The application of ultrasonic echolocation measurement method to evaluate porous 
structures is presented. This article can be beneficial to researchers, who specialize in evaluation of porous structures. 
Keywords: ultrasonic measurement methods, physical-mechanical properties of porous food products, evaluation of 
porous products, acoustic echolocation method, direct and indirect acoustic measurement methods, asymmetrical Lamb 
wave.  
 
 
Introduction 

Porous food products make up a significant part of all 
of the food products being manufactured today. In general, 
from a physical-mechanical point of view, food is a 
composite material [1-10]. Due to the rising competition in 
food market share, and higher quality requirements, 
various methods of product quality control are being 
actively developed [11-26]. The largest portion of porous 
food consists mostly of grain products. Therefore, porosity 
is one of the most important quality properties of grain 
products [27-34]. 

Mechanical, optical, electrical, photographic, radio 
isotopic, X-ray, infrared and spectrometric methods can be 
used to determine the porosity [10-26]. We will briefly 
look into some of these methods. 

Mechanical method has a drawback because it is non-
technological and can not be applied in a non-interruptive 
production process. Today, porosity is determined by using 
a standardized mechanical method. This method is based 
on measuring the quantity of liquid, which is absorbed by 
pores of product. To determine the porosity, the sample of 
a product is submersed in liquid of 60 degrees Celsius and 
then is taken out after a given time. Before and after 
submersion the sample is weighed. By analyzing the 
weight difference and minding the volume of the sample, 
porosity is determined. This method requires accurateness 
and responsibility from an operator. When the sample is 
taken out of water, some liquid is being lost or the sample 
can simply break up. This method is destructive and 
produces little information. It does not determine in real 
time the quantity of water penetrating the sample. Also, it 
does not supply us information about the structure and 
defects of the sample’s surface. This is very important 
when developing technology for high quality products. 

Optical method enables us to evaluate only the surface 
of the product, but does not provide information about the 
inner structure. Sensitive radio isotopic method is not 

desirable, because there is a hazard to personal health and 
it has a negative influence on the products, which are 
analyzed using this method. Electrical method has 
influence on the product’s chemical composition. Our tests 
showed that when electric current is passing through the 
product, conductive channels are being created. Because of 
these channels, large inaccuracies are present. 

Spectrometric measurement methods [35-39] create a 
separate and interesting group of measurement methods. 
These methods were developed using electromagnetic and 
acoustic waves as carriers of information. From the 
spectrum of electromagnetic waves, infrared waves are 
used most frequently. Measurement methods from this 
group have a fairly high accuracy. The measurements of 
parameters of wave processes are widely applied in 
practice. Duration, frequency, amplitude and phase are 
easily measurable parameters of wave processes. Most 
frequently measured parameters in technical measurements 
are time interval between signals [40-42], monochromatic 
and spectral measurements of signal’s amplitude [43-56]. 
Out of previously mentioned methods, spectrometric 
method is most complicated. It is difficult to apply this 
method for manufacturing processes in an environment 
with many disturbances. Therefore, the most suitable way 
for measuring porosity in such environment is to use a 
method based on measuring time interval between signals 
or, in other words, method based on measuring ultrasound 
velocity through materials. Also, method based on 
measuring signal’s amplitude or, in other words, method 
based on measuring ultrasound attenuation through 
materials, can successfully be applied. These methods 
provide the best results when a frequency from a wide 
range is chosen. The velocity of acoustic waves in various 
materials is not very high by comparison. For example, 
velocity in gas is around 300 m/s, in liquids – around 1500 
m/s and in solid materials – around 5000 m/s. Velocity of 
acoustic waves is within range of 1000-2000 m/s for most 
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of the food products. Such a low velocity can easily be 
measured with high accuracy.  

Today there is a lively interest in acoustic 
measurement methods [15-56]. These methods can be 
direct [40-56] or indirect [57-62]. The most widely used 
direct method is when parameter changes of ultrasonic 
signal are measured after the signal has penetrated the 
porous product. Due to the complex propagation of 
ultrasonic signals, direct methods are rarely used in 
practice.  

Also, the direct method mentioned earlier can be 
combined with an acoustic echolocation method [63-67]. 
In this case, the ratio of reflected signal’s parameters and 
penetrated signal’s parameters is measured. Due to the 
properties of ultrasonic wave propagation, their application 
for evaluating porous materials is promising. When the 
optimal frequency of ultrasonic waves is chosen, structures 
composed of various particle sizes can be analyzed. To 
analyze liquid products, it is best to use ultrasonic waves of 
higher frequencies. For porous structures, the best results 
are obtained when using lower frequency ultrasonic waves 
[28,53,67]. 

By applying echolocation, we succeeded to develop a 
complex mechanical method for evaluating porous 
products [57-62]. We measured the quantity of absorbed 
liquid without taking the sample out of the measurement 
vessel. Also we determined the quantity of liquid 
penetrating the sample in real time. To achieve this, we 
measured the change of liquid’s level in the measurement 
vessel. For this purpose, a highly accurate level meter for 
liquids was used. 

To determine the density of porous materials, which 
are placed in thin-walled containers, Lamb waves can be 
used among other acoustic measurement methods [68-76]. 

Physical-mechanical parameters of porous 
materials 

By the origin of their pores, porous materials can be 
separated into four main categories [11]: 

a) when pores are separated from each other by 
layers of material; 

b) when pores are interconnected; 
c) when separating material is composed of fibers; 
d) when separating material is composed of stripes. 
Objective evaluation of physical-mechanical 

parameters is important when characterizing taste 
properties of food products. 

The main physical-mechanical parameters of porous 
materials are dispersion, pattern of pores (repeatability) 
and density. Porous materials are described by the size of 
their pores and uniformity. The separating layers between 
pores can be thinner or thicker. These layers can also be 
elastic or solid. The pattern of a porous material is 
inversely proportional to density. Pattern describes the 
volume ratio of pores and separating layers. The density of 
a porous material [11]: 

 ( ) ( ) PllggPlgP VVVVmm // ρρρ +=+=  , (1) 

where mg and ml – mass of gas and of separating layer 
respectively; ρg and ρl – density of gas and of separating 

layer respectively; VP, Vg, Vl – volume of porous material, 
of gas and of separating layer respectively. 

Because the density of separating layer is more than a 
1000 times higher than the density of gas (n>1000), then 

 nVV lPllP // ρρρ =≈  , (2) 

where n is a pattern of porous material and 

 gP VVn /=  . (3) 

The simplest way to determine density of porous 
materials is to use a direct measurement of volume and 
mass. 

In this case the density of porous materials: 

 ( ) PlPllP VmVV // == ρρ  . (4) 

The pattern n of porous materials can be determined 
using an indirect electrical measurement method [11,15]: 

 ( )BXXn Pl /=  , (5) 

where Xl and Xp – specific electrical conductivity of 
separating layer and porous material respectively; 
B=1.5...3 – coeficient of a porous material. 

The pattern of a porous material can also be 
determined using an indirect radio isotopic method [11]: 

 ( )[ ] ([ ]PlPl NNNNn /ln//ln/ 00 )== ρρ   , (6) 

where N0, NP, Nl – pulse count through gas, porous 
material and separating layer respectively. 

Porous materials are also characterized by the size of 
their pores. One of the direct methods for evaluating their 
size is photography [11]. By using this method it is 
possible to obtain information about the diameter and 
shape of pores, and about the width of the separating layer. 
The pores are photographed in direct or reflected light by 
magnifying them from 10 to 100 times. 

It needs to be noted that various corrective multipliers 
need to be added to most of the expressions used for 
calculating physical-mechanical properties of porous 
materials. The corrective multipliers depend on the chosen 
measurement method. These expressions are most suitable 
when research is being done in laboratory conditions, but 
can not be used when designing automated systems used 
for manufacturing porous products.  

Best suitable methods for designing automated control 
systems are: method based on measuring ultrasound 
velocity through materials [40-42] and method based on 
measuring ultrasound attenuation [42-47] through 
materials. Both of these methods require very little time to 
determine the final result. Also they do not require special 
sample preparation or any kind of sample destruction. 
They can be used for on-line process control, which makes 
them even more attractive. 

Usage of direct acoustic methods for evaluating 
parameters of porous materials 

To determine the porosity of materials, ultrasonic 
methods can be used both directly [16-26] and indirectly 
[58-62]. A direct measurement method is when parameter 
changes of ultrasonic signal are measured before entering 
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and after the signal has penetrated the porous product 
[22,23]. The porosity (density) is then determined by 
analyzing the ratio of these signals. If the porosity of the 
material is high and the pores are quite large, then the 
parameter changes of ultrasonic signals are smaller and 
difficult to measure. When comparing samples of material, 
their thickness should be as equal as possible. In this case, 
the amplitude of the signal, which has penetrated through 
the porous product, is calculated from expression [49]: 

  , (7) PPl
inout eAKA αρ−= 0

where Ain and Aout – amplitudes of transmited and received 
signals respectively; K0 – corrective multiplier dependent 
on measurement environment; α – attenuation of 
ultrasound in porous material; lP – thickness of sample. 

 
 
Fig.1. Diagram of porous material evaluation by using a direct 

ultrasonic method 

This method can be improved by additionally 
measuring the amplitudes of signal, which has reflected of 
the porous material. The frequency of this signal must be 
17.20 kHz. In this case the density ρP (g/cm3) of the porous 
material can be calculated from expression [62]: 

 ( )( ) 379.15/422.3/ln outrefP AA ⋅=ρ  , (8) 

where Aref is amplitude of reflected signal. 
To determine the porosity of food products, Lamb 

waves are an interesting option. Excitation and propagation 
of Lamb waves in elastic plates, placed in gas and liquid 
environments, is thoroughly researched in scientific papers 
[68-76]. We think that propagation of Lamb waves in 
plates was not yet researched, in case when a porous 
material is loaded on only one surface of a plate. 

We propose an improved measuring method (Fig. 2) 
for porous materials. To improve the acoustic contact 
between the sample and the plate, a weight should be 
placed on top of a sample. The weight should be as high as 
possible, but should not change the physical-mechanical 
properties of the sample. 

 
 
Fig.2. Measuring diagram for porous materials by using Lamb 

waves; 1 – Lamb wave transmitter, 2 – Lamb wave receiver 

Regarding papers [62, 73-75] we propose to use an 
asymmetrical A0 mode Lamb wave. The attenuation for 
this wave is directly proportional to the density of porous 
material and inversely proportional to the thickness of the 
plate. In practice, the thickness of the plate is known. 
Therefore the attenuation depends only on the density of a 
porous material. In practice it is advisable to use thin 
plates.  

Usage of indirect acoustic methods for evaluating 
parameters of porous materials 

The indirect measurement methods [57-62] are based 
on the property of a porous material to absorb liquid. Some 
time needs to pass until the pores are completely filled 
with liquid. After the sample is submersed, the level of 
liquid begins to change in the measurement vessel. The 
velocity of this change depends on the material’s porosity. 
Among other methods, the ultrasonic echolocation method 
can be used to measure the change of liquid’s level. The 
obtained results, when using this method to measure 
porosity of various materials, were described by us in 
[78,79]. 

Ain

Aref
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Sample 

Ultrasonic 
transmitter 

Ultrasonic
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lP

Measurement vessel is mounted on a hard and solid 
support. Electro acoustic unit of an ultrasonic echolocation 
level meter is also mounted on the same support above the 
measurement vessel. This way the distance between the 
electro acoustic unit and the bottom of the measurement 
vessel is held constant.  

At first, the measurement vessel is filled with water 
and the water level h1 is measured (Fig. 3. a)). 

Level 
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Level 
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h2 h3

 
 
Fig.3. Stages of the porosity evaluation process using acoustic 

echolocation 

Then a sample of a porous material is submersed in the 
water. The rise of the water level in the measurement 
vessel is proportional to the volume of the sample. The 
suddenly risen water level h2 is measured with the level 
meter (Fig. 3. b)). Given that the walls of the measurement 
vessel are vertical, the volume of the porous material is: 

P

1 2

Sample 

Weight  ( ) ShhVP ⋅−= 12  , (9) 
where S is the area of the water’s surface. 

From the moment of the sample’s submersion, the 
falling water level is being constantly recorded until it 
reaches h3 (Fig. 3. c)). When the level reaches h3, the 
process ends and the water level remains constant. 

The water level is falling, because it is penetrating into 
the pores of the sample, replacing air is the process. The 
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penetration rate of the water is directly proportional to the 
porosity of the sample. 

The changes of the water level are shown in Fig. 4. 

 
Fig.4. Changes of the water level in the measurement vessel  

After a chosen time t1, the water level declines by: 
  , (10) )( 12 thhh −=Δ

where h(t1) is water level at the moment t1. 
In general, Δh=h(t) is a function of water level change 

in time. Derivative dh/dt is the penetration rate of water. 
This rate, at a chosen moment, is proportional to the 
porosity of the sample. 

The volume of water, which has penetrated the sample, 
is: 

  , (11) ( ) ShhVg ⋅−= 32

where h3 is final level of water, after the gas in pores of the 
sample was completely displaced by water. 

The value Vg shows the amount of gas, which was 
present in the pores of the sample before submersion. 
Keeping that in mind, the pattern of the sample’s pores, 
according to expressions (3), (9) and (11), is calculated 
from expression: 

  , (12) ( ) ( 3212 // hhhhVVn gp −−== )
If the porous food product has a surface layer with 

little or no defects, than the water penetrates it slowly, and 
the change of water level h is also slow. When the surface 
layer disintegrates, the penetration rate increases, and the 
derivative dh/dt only depends on the porosity of the 
product and the properties of the separating layer between 
pores.  

It needs to be noted that if the product is made from 
grain products, the separating layers between pores can 
melt or swell. Therefore the recipe of the product also 
influences the dynamic of water penetration (dh/dt). This 
information can be used to correct the production process 
of food products. 

The diagram of other indirect measurement method is 
shown in Fig. 5. 

In the measurement unit the piston creates pressure P, 
which forces the volume of air through the porous material 
of a specified thickness (sample): 

 ShV pg ⋅= 0  , (13) 
where hp is the height of the gas chamber; S is the surface 
area of the piston. 

The time, during which the piston reaches the bottom 
of the chamber, along with the speed of piston’s descent, 
are measured (Fig. 6). 

Time t is inversely proportional to the porosity of the 
sample. By comparing the piston’s descent times for 
various products, the differences of their porosity are 
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Fig.5. Diagram of an indirect measurement method for determining 
the porosity of food products by using compressed air and 
acoustic level meter 
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Fig.6. Diagram of the piston’s descent; 1 – the descent when the 

sample is more porous; 2 – the descent when the sample is less 
porous 

determined. The speed of the piston’s descent (dhp/dt) is 
used to determine the size of the product’s pores, pore 
pattern and the thickness of separating layers between 
pores. This measurement method can also be applied when 
evaluating loose products (grains). 

Conclusions 
Direct acoustic methods for determining porosity of 

materials can successfully be applied when designing 
automated control systems, because these methods are fast 
and provide a lot of information about the material. Lower 
ultrasonic frequencies are more suitable when 
implementing these methods, because the attenuation of 
such frequencies is lower in porous materials.  

Indirect acoustic methods for determining porosity can 
be used in laboratory conditions, because they are faster 
when comparing them with mechanical measurement 
methods. When measuring the changes of liquid’s level by 
using an acoustic level meter, the sample remains 
submersed the whole time. This way, the dynamics of 
water absorption (penetration) process can be recorded. 

During the first moments of submersion, porous 
materials with a defect-free surface layer absorb liquid 
very slowly and the absorbed quantity of water is very low 
(up to 10 mm3). Because of that, liquid’s level in a 
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measurement vessel changes very slowly. To detect such 
low changes in the liquid’s level (corresponding to the 
volume of 1 mm3), a very precise ultrasonic acoustic level 
meter is required. The level meter must be able to measure 
distance interval of 1 to 40 mm. The absolute error of the 
unit should be no more than 5 microns, when the 
temperature is 60˚C.  

When using an indirect acoustic method for measuring 
porosity, additional information about the defects of the 
product’s surface is obtained, along with the time, during 
which the product completely disintegrates. 

When combining acoustic level meters for small 
distances with special technological measurement 
equipment, they can be used to determine porosity of 
materials. Therefore, such equipment can be used in 
research projects for the food industry. 

Acoustic level meters for small distances can be used 
when designing measurement equipment to analyze and 
evaluate food products. 
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A. Petrauskas 

Poringų maisto produktų įvertinimas naudojant ultragarsinius 
matavimus 

Reziumė 

Apžvelgiamos galimybės taikyti įvairius metodus poringoms 
maistinėms struktūroms tirti ir matuoti. Pabrėžiama, kad utragarsiniai 
virpesiai ir bangos dėl  savo fizinių savybių ir plataus darbinių dažnių 
intervalo pakankamai geri poringoms maistinėms struktūroms tirti ir turi 
nemažai pranašumų, palyginti su kitais metodais. Pasiūlyta akustinį 
aidolokacinį metodą taikyti tiesioginiam ir netiesioginiam poringų 
maistinių struktūrų tyrimui. Apžvelgiamos galimybės Lembo bangas 
naudoti poringoms struktūroms įvertinti, ultragarsinį aidolokacinį 
matavimo metodą taikyti poringoms struktūros tyrinėti. Straipsnis gali 
būti naudingas poringų struktūrų įvertinimais užsiimantiems tyrėjams. 
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