
ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

 1

Caches in DSP processors

M. Genutis, E. Kazanavičius, O. Olsen

KTU DSP Laboratory

Communication Department, Aalborg University

Introduction

While caches are familiar in RISC microprocessors,
they’ve only recently entered the world of DSPs. DSP
processor vendors preferred no cache at all or simple
instruction buffers instead of complicated memories with
caches. Caches bring a fair amount of unpredictability into
hardware systems. That was the main reason why caches
haven’t been used in DSP processors. As DSP processors
become more powerful, there appears a need to improve
memory system.

The use of caches in DSP processors can be motivated in
part by cost. Assuming a reasonable locality of reference in
an application, a relatively small amount of cache memory
can approximate the performance of a much larger local
memory at a significantly lower cost. Thus, cheaper DSPs
become cost-effective solutions for a much wider range of
applications.

There is one more important advantage of a program
cache – it often leads to lower core-processor power
consumption. This is because program memory cache is
typically located close to the core and, therefore, does not
use the large address and data buses that go to the main
system memory.

A. The Principle of Locality
A program does not access all of its code or data at once

with equal probability. Having recently accessed information
in cache increases the probability of finding information
locally without having to access memory. The principle of
locality states that the CPU accesses a relatively small
portion of the address space at any instant of time.

The principle of locality has two components: spatial
and temporal. Spatial locality states that for a given memory
access, the next access is likely to be sequential. That is,
programs reference items whose addresses are close to other
recently accessed items. For example, accesses to elements
of an array or record show a natural spatial locality. Caching
takes advantage of spatial locality by moving blocks from
memory into cache and closer to the processor. References to
the next location are sometimes separated into a third aspect,
known as sequential locality.

Temporal locality states that once memory is accessed,
the same data or instructions are likely to be used again. That
is, programs tend to reuse recently accessed items. Temporal
locality is found in instruction loops, data stacks and variable
accesses. For example, when executing an instruction in a

loop, the loop may iterate many times. Each time the same
instructions are executed.

Different programs have different locality degrees.
Algorithms that have a lot of control code are not as
predictable as those, which iterate in small loops. However,
there is no consistent way of measuring the degree of locality
of a program. We can only state that one particular algorithm
has a higher locality than the other one. We can prove this
“empirically” by running these programs on a particular
cache configuration and measure their cache hit ratio.

B. Cache Overview
Cache memory is a small, fast memory unit between the

CPU and the main storage memory. Cache typically stores
the most recently used instructions and data. It makes use of
the principle of locality. Cache memory is important; it
bridges the gap in capabilities between the CPU and main
memory. It allows a small high-speed memory to be effective
by storing only a subset of the main memory. The concerns
are:

1. Maintaining coherence between cache and main
memory.

2. The criteria needed to refresh cache memory as the
program is executed.

Two cache architectures are used:
1. Harvard, where instructions and data caches are

separate.
2. Von Neumann, where they are unified.
Within the cache memory there must be a way for the

cache to know where the necessary information resides. This
enforces a mapping on the data/instruction blocks in the
cache. There are three general formats for the mapping of a
block to the cache:

1. Fully associative.
2. Direct mapped.
3. Set associative.
For an in-depth cache architecture overview the reader

should consult 10.

Concepts and quantitative issues
Here we’ll take a look at the concepts and numbers,

which describe the behavior of the cache.
The memory access time is the time between the

submission of a memory request and the completion of
transfer of information into or from the addressed location.
The memory cycle time is the minimum time that must elapse

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

 2

between two successive operations to access locations in the
memory (read or write).

A cache hit occurs when the requested data are found in
the cache, otherwise a miss occurs. Thus we can define the
cache hit ratio as:

nnh h /= , where nh – number of cache hits, n –
number of overall memory accesses.

Similarly, cache miss ratio:
nnm m /=

nnh h /1−= , here nm – number of cache misses.
Assuming tc – cache access time and tm – main memory

access time, memory access time in case of a cache miss
would be:

mca ttt +=
Suppose the reference is repeated n times and, after the

first reference, the location is always found in the cache.
Then the average access time equals:

mcmcmcav thtnttntntt)1(//)(−+=+=+=
The concepts and equations above are the basic

measures used in describing cache behavior.

Cache performance
Cache hit ratio depends very heavily on the programs

being executed and the overall workload. The exact value of
miss ratio cannot be found for any particular computer
system. The miss ratio also depends upon the cache
organization chosen, the size of the internal division of the
cache, the write policy and the replacement algorithm.

There are three basic methods of obtaining an estimate
of the miss ratio:

Trace-driven simulation – this method is probably the
most popular. In this method, programs are selected for
execution on a computer system not necessarily having a
cache. A record of the instruction and data references is kept.
The processor trace facility is generally used. Specific cache
organizations are then simulated, using the instruction/data
references that have been gathered, to determine the miss
ratio.

Direct measurement – the memory reference sequence
could be obtained by direct measurement by attaching
special monitoring hardware to the computer system to
record the memory references.

Mathematical modeling – models can be developed
based upon differential equations, statistical and probabilistic
techniques. After a mathematical model has been obtained, it
is generally compared to experimental simulation results.

Real-time constraints and cache
Real-time systems are commonly considered to be used

only for specific applications. Nowadays real-time systems
are being built not only for life-critical applications, where
the cost factor is of second importance. Emerging areas like
car computers, multimedia computing, gesture recognition,
voice interaction and the like demand real-time capabilities,

but at a relative low cost. These applications require cheap
hardware platforms to be competitive in the marketplace.

It is highly desirable to utilize cache memory in real-
time systems, provided that the behavior of cache can be
controlled in deterministic manner. A major reason for the
absence of caches in real-time applications is due to lack of
understanding of its predictability. This refers to the ability
to place a tight bound on the worst-case execution time
(WCET) of the task.

DSP cache specifics
According to [5], two factors reduce the utility of caches

in DSP applications:
1. Data access patterns.
2. Real-time constraints.
DSP applications tend to process large amounts of data.

Often, there is less locality in data accesses in DSP
applications than in other types of applications. Because of
that data caches are less effective for DSP applications.
However, DSP applications display very strong locality in
instruction accesses. DSP application execution time is
typically dominated by a small number of small loops,
making instructions caches appear attractive.

Dynamic behavior of caches makes them difficult to
apply in real-time DSP applications. The programmer,
implementing a DSP application, doesn’t know what will be
in the cache at the moment his program will be executed.

Some caches provide features to help programmers design
real-time applications. For example, the ability to pre-load
and lock portions of the caches. Using this feature, portions
of the caches can be loaded with specified blocks of
instructions or data, and then locked so that the loaded
instructions or data cannot be displaced from the caches.
Once portions of the caches have been locked, these portions
act as a fast local memory, and access times for data and
instructions in the locked portions become deterministic.
However, locking portions of the caches reduces the
effectiveness of the caches for the remaining instructions and
data by reducing the size of the caches available for the
remaining instructions and data.

DSP processors have traditionally avoided caches,
relying instead on small amounts of on-chip memory. This
memory is often treated as a manually controlled cache.
Developers explicitly transfer instructions and data between
on-chip and off-chip memory. DSP processor caches usually
differ from those found in general-purpose caches. As noted
in [6], the key differences between general-purpose
processor caches and those of DSP are:

1. DSP processors use instruction caches (or no caches
at all) but very rarely use data caches.

2. DSP processor instruction caches are generally
much smaller than general-purpose processor
instruction caches. They are often integrated into
the processor core itself, as a part of the processor’s
control unit.

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

 3

3. DSP processor instruction caches are usually
supplemented by additional on-chip non-cache
SRAM.

4. DSP processor instruction caches are usually simpler
in their organization and operation than general-
purpose processor caches, and as a result their impact
on execution time is usually more predictable.

5. DSP processor instruction caches are more
specialized than general-purpose processor caches.
Often they are used only in conjunction with special
instructions designed to provide low-overhead
looping constructs.

DSP Processor cache case studies

C. Texas Instruments C6211/C6711 Caches
C6211 is a fixed-point and C6711 is a floating-point

DSP processor. They do not differ in their memory
architectures. Further I’ll talk of both processors while
mentioning only the C6211 device.

C6211 provides two level memory architecture for the
internal program and data busses. The first level memory for
both the internal program and data bus is a 4K-byte cache,
designated L1P for the program cache and L1D for the data
cache. The second level memory is a 64Kbyte memory block
that is shared by both the program and data memory busses,
designated L2.
Table 1: TMS320C6211 Cache architecture

Cache Space Size (Bytes) Associativity Line Size (Bytes)

L1P 4K Direct 64

L1D 4K 2-way 32

L2 64K 1- to 4-way 128

1) Level-one Data Cache (L1D)
The L1D is organized as a 2-way set associative cache

with a 32-byte line size. Set associative cache provides
additional flexibility to a direct mapped cache. This cache
architecture is beneficial for DSP data, which tends to be
more random and have larger strides than program data.

Each way in the L1D caches 2Kbytes of data. 2-way set
associative cache reduces the chance of a cache thrash since
two thrashing addresses can be stored in the cache
simultaneously. This is a beneficial architecture for DSP
data, which often accesses multiple arrays simultaneously,
such as arrays of coefficients and samples. A 2-way set
associative cache is an advantageous design since the CPU
has two data paths, which could simultaneously access two
different data arrays. The L1D minimizes the chance of these
two data paths thrashing.

The L1D replaces data with a Least Recently Used
(LRU) replacement strategy. LRU replacement chooses
which set to update with new data by determining which of
the two cache ways was accessed least recently. The new

data is then placed in the appropriate set of that least recently
used way. LRU is the best replacement strategy for set
associative caches because of the temporal locality of data –
once data has been used it will be probably needed again
within a short time.

2) Level-one Program Cache (L1P)
The L1P is organized as a direct mapped cache with a

64-byte line size. A direct mapped cache is well suited for
DSP algorithms, which tend to consist of small, tight loops
that rarely thrash. The L1P line size provides a modest
prefetch of the next fetch packet, eliminating the startup
latency for fetching that packet.

In direct mapped cache every cacheable memory
location maps to only one location in the cache. Thus, the
cache controller needs to check only one location in the tag
RAM to determine if requested data is available in the cache.
DSP algorithms primarily consist of loops that execute the
same program kernel many times on multiple data locations.
Such algorithms remain in a loop for a long before
proceeding to the next kernel. The L1P is large enough to
hold several typical DSP kernels simultaneously. Since these
kernels execute sequentially, they will not thrash in the L1P.
Thus, a simple direct mapped cache is all that is needed to
achieve considerable program performance without requiring
complex caching hardware.

When a cache miss occurs, the L1P requests an entire
line of data from the L2. In other words, both the requested
fetch packet and the next fetch packet in memory are loaded
into the cache. Since most applications execute sequential
instructions, there is a high likelihood that the next fetch
packet will be immediately available when the CPU requests
it. Thus, the startup latency to fetch the next fetch is
eliminated by eliminating the startup latency and reducing
misses reduces the execution time of an application
considerably compared to a cache with a smaller line size.

3) Level-two Cache/Unified Memory (L2)
The L2 is a 64-Kbyte SRAM divided into four 16-Kbyte

blocks. The L2 is a unified memory, used for both program
and data. The amount of program or data in the L2 is
configurable. For example, if the application requires only 7
Kbytes of program space and 57 Kbytes of data space then
both could be linked into the L2 at the same time. Likewise,
if the application needed more program space than the data,
the majority of the L2 RAM could be linked as program
space.

Each of the four blocks can be independently configured
as either cache or memory mapped RAM. This allows
dictating the amount of the L2 that is used as cache and how
much is used as RAM. If the application uses some data,
which must be accessed quickly, that data can be linked into
an L2 block, which is configured as RAM. The rest of the L2
can be configured as cache, which will provide high
performance operation of the remaining program and data.

By unifying the program and data in the L2 space, the
L2 cache is more likely to hold the memory requested by the
CPU. It enables the on-chip memory to contain more data

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

 4

than program when highly computational, looping code is
being run to process large data streams. For long, serial code
with few data accesses, the L2 may be more densely
populated with program instructions. The unification allows
allocating the appropriate amount of memory for both
program and data and keeps the on-chip memory full of
instructions and data that are most likely to be requested by
the CPU.

Texas Instruments have adopted a new cache scheme in
DSP. Such scheme has never been tried before because of
the indeterminacy that is brought by the L1/L2 cache levels.
DSP applications increase in size and processor
manufacturers cannot provide enough on-chip memory to
place these applications. Thus, two-level caches might
become more popular in the future.

D. Motorola DSP56300 Cache
The Motorola’s DSP56300 device has only the

instruction cache. When enabled, it comprises 1024 24-bit
words of program memory. The purpose of this user-
transparent instruction cache is to lower the requirements for
expensive, high-speed memory.

The cache is 8-way fully associative. Least recently used
algorithm is used for sector replacement.

Programmer can lock each cache sector (out of the 8,
each consisting of 128 24-bit words). Locking a sector
prevents its replacement in case of a miss even if it would
have been its turn to be replaced.

The cache can be flushed with one instruction (for
example, for task switching).

The penalty incurred for a cache miss is identical with
the one for a regular instruction fetch from external memory.

Conclusions
Caches in DSP processors appeared not a long time ago.

Their use have been delayed mostly because of their
probabilistic performance increase which they bring to DSP
applications. It’s difficult to meet real-time constraints when
using caches. First, there appeared simple instruction buffers,
then instruction and data caches. Texas Instruments came up
with a two level cache architecture. The use of caches is
mostly motivated by cost – large on-chip memory is

expensive. As DSP applications become larger, we expect
more DSP processors incorporate caches. Processor
manufacturers leave freedom to programmers – caches can
be disabled, cache sectors can be locked. Further, the author
of this report is going to benchmark the C6211 two-level
cache with DSP application benchmarks such as GSM-EFR
encoder/decoder, Viterbi.

References

1. Basumallick Swagato and Nilsen Kelvin. Cache Issues in Real-Time
Systems. Technical Report, Department of Computer Science, Iowa
State University, May 1994.

2. Bordeaux Ethan. Advanced DSP Performance Complicates Memory
Architectures in Wireless Designs. Wireless Systems Design. April
2000. P. 20-24.

3. Dropsho Steve. Real-Time Penalties in RISC Processing. Technical
Report, Department of Computer Science, University of Massachusetts-
Amherst, December 1995.

4. Jeremiassen Tor. A DSP with Caches – A Study of the GSM-EFR
Codec on the TI C6211. In International Conference on Computer
Design, (ICCD ’99). October 1999. P. 138-145.

5. Lapsley Phil, Bier Jeff, Shoham Amit and Lee Edward. DSP
Processor Fundamentals: Architectures and Features. IEEE Press. 1997.

6. DSP5630 Family Manual. Motorola, November 2000.
7. Simar Ray. Two-level cache quickens pace for DSP performance.

Embedded Systems Development. February 2000.
8. TMS320C6000 Peripherals Reference Guide. Texas Instruments. April

1999.
9. TMS320C6211 Cache Analysis. Texas Instruments. September 1998.
10. Wilkinson Barry. Computer Architecture: Design and Performance.

Prentice Hall. 1996.

M. Genutis, E. Kazanavičius, O. Olsen

DSP spartinančiųjų atminčių panaudojimas signalų procesoriuose

Reziumė

Darbo tikslas – apžvelgti spartinančios atminties panaudojimo DSP
sistemoje efektyvumą.

Darbe aptariami pagrindiniai atminties panaudojimo principai ir
koncepcija. Analizuojama ekfektyvumo klausimai. Palyginta kelių firmų
DSP sistemos.

Darbas atliktas bendradarbiaujant su Danijos Aalborgo universitetu.

Pateikta spaudai 2001 04 23

