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Introduction 

While caches are familiar in RISC microprocessors, 
they’ve only recently entered the world of DSPs. DSP 
processor vendors preferred no cache at all or simple 
instruction buffers instead of complicated memories with 
caches. Caches bring a fair amount of unpredictability into 
hardware systems. That was the main reason why caches 
haven’t been used in DSP processors. As DSP processors 
become more powerful, there appears a need to improve 
memory system. 

The use of caches in DSP processors can be motivated in 
part by cost. Assuming a reasonable locality of reference in 
an application, a relatively small amount of cache memory 
can approximate the performance of a much larger local 
memory at a significantly lower cost. Thus, cheaper DSPs 
become cost-effective solutions for a much wider range of 
applications. 

There is one more important advantage of a program 
cache – it often leads to lower core-processor power 
consumption. This is because program memory cache is 
typically located close to the core and, therefore, does not 
use the large address and data buses that go to the main 
system memory. 

A. The Principle of Locality 
A program does not access all of its code or data at once 

with equal probability. Having recently accessed information 
in cache increases the probability of finding information 
locally without having to access memory. The principle of 
locality states that the CPU accesses a relatively small 
portion of the address space at any instant of time. 

The principle of locality has two components: spatial 
and temporal. Spatial locality states that for a given memory 
access, the next access is likely to be sequential. That is, 
programs reference items whose addresses are close to other 
recently accessed items. For example, accesses to elements 
of an array or record show a natural spatial locality. Caching 
takes advantage of spatial locality by moving blocks from 
memory into cache and closer to the processor. References to 
the next location are sometimes separated into a third aspect, 
known as sequential locality. 

Temporal locality states that once memory is accessed, 
the same data or instructions are likely to be used again. That 
is, programs tend to reuse recently accessed items. Temporal 
locality is found in instruction loops, data stacks and variable 
accesses. For example, when executing an instruction in a 

loop, the loop may iterate many times. Each time the same 
instructions are executed. 

Different programs have different locality degrees. 
Algorithms that have a lot of control code are not as 
predictable as those, which iterate in small loops. However, 
there is no consistent way of measuring the degree of locality 
of a program. We can only state that one particular algorithm 
has a higher locality than the other one. We can prove this 
“empirically” by running these programs on a particular 
cache configuration and measure their cache hit ratio. 

B. Cache Overview 
Cache memory is a small, fast memory unit between the 

CPU and the main storage memory. Cache typically stores 
the most recently used instructions and data. It makes use of 
the principle of locality. Cache memory is important; it 
bridges the gap in capabilities between the CPU and main 
memory. It allows a small high-speed memory to be effective 
by storing only a subset of the main memory. The concerns 
are: 

1. Maintaining coherence between cache and main 
memory. 

2. The criteria needed to refresh cache memory as the 
program is executed. 

Two cache architectures are used: 
1. Harvard, where instructions and data caches are 

separate. 
2. Von Neumann, where they are unified. 
Within the cache memory there must be a way for the 

cache to know where the necessary information resides. This 
enforces a mapping on the data/instruction blocks in the 
cache. There are three general formats for the mapping of a 
block to the cache: 

1. Fully associative. 
2. Direct mapped. 
3. Set associative. 
For an in-depth cache architecture overview the reader 

should consult  10. 

Concepts and quantitative issues 
Here we’ll take a look at the concepts and numbers, 

which describe the behavior of the cache. 
The memory access time is the time between the 

submission of a memory request and the completion of 
transfer of information into or from the addressed location. 
The memory cycle time is the minimum time that must elapse 
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between two successive operations to access locations in the 
memory (read or write). 

A cache hit occurs when the requested data are found in 
the cache, otherwise a miss occurs. Thus we can define the 
cache hit ratio as: 

nnh h /= , where nh – number of cache hits, n – 
number of overall memory accesses. 

Similarly, cache miss ratio: 
nnm m /=  

nnh h /1−= , here nm – number of cache misses. 
Assuming tc – cache access time and tm – main memory 

access time, memory access time in case of a cache miss 
would be: 

mca ttt +=  
Suppose the reference is repeated n times and, after the 

first reference, the location is always found in the cache. 
Then the average access time equals: 

mcmcmcav thtnttntntt )1(//)( −+=+=+=  
The concepts and equations above are the basic 

measures used in describing cache behavior. 

Cache performance 
Cache hit ratio depends very heavily on the programs 

being executed and the overall workload. The exact value of 
miss ratio cannot be found for any particular computer 
system. The miss ratio also depends upon the cache 
organization chosen, the size of the internal division of the 
cache, the write policy and the replacement algorithm. 

There are three basic methods of obtaining an estimate 
of the miss ratio: 

Trace-driven simulation – this method is probably the 
most popular. In this method, programs are selected for 
execution on a computer system not necessarily having a 
cache. A record of the instruction and data references is kept. 
The processor trace facility is generally used. Specific cache 
organizations are then simulated, using the instruction/data 
references that have been gathered, to determine the miss 
ratio. 

Direct measurement – the memory reference sequence 
could be obtained by direct measurement by attaching 
special monitoring hardware to the computer system to 
record the memory references. 

Mathematical modeling – models can be developed 
based upon differential equations, statistical and probabilistic 
techniques. After a mathematical model has been obtained, it 
is generally compared to experimental simulation results. 

Real-time constraints and cache 
Real-time systems are commonly considered to be used 

only for specific applications. Nowadays real-time systems 
are being built not only for life-critical applications, where 
the cost factor is of second importance. Emerging areas like 
car computers, multimedia computing, gesture recognition, 
voice interaction and the like demand real-time capabilities, 

but at a relative low cost. These applications require cheap 
hardware platforms to be competitive in the marketplace. 

It is highly desirable to utilize cache memory in real-
time systems, provided that the behavior of cache can be 
controlled in deterministic manner. A major reason for the 
absence of caches in real-time applications is due to lack of 
understanding of its predictability. This refers to the ability 
to place a tight bound on the worst-case execution time 
(WCET) of the task. 

DSP cache specifics 
According to [5], two factors reduce the utility of caches 

in DSP applications: 
1. Data access patterns. 
2. Real-time constraints. 
DSP applications tend to process large amounts of data. 

Often, there is less locality in data accesses in DSP 
applications than in other types of applications. Because of 
that data caches are less effective for DSP applications. 
However, DSP applications display very strong locality in 
instruction accesses.  DSP application execution time is 
typically dominated by a small number of small loops, 
making instructions caches appear attractive. 

Dynamic behavior of caches makes them difficult to 
apply in real-time DSP applications. The programmer, 
implementing a DSP application, doesn’t know what will be 
in the cache at the moment his program will be executed. 

Some caches provide features to help programmers design 
real-time applications. For example, the ability to pre-load 
and lock portions of the caches. Using this feature, portions 
of the caches can be loaded with specified blocks of 
instructions or data, and then locked so that the loaded 
instructions or data cannot be displaced from the caches. 
Once portions of the caches have been locked, these portions 
act as a fast local memory, and access times for data and 
instructions in the locked portions become deterministic. 
However, locking portions of the caches reduces the 
effectiveness of the caches for the remaining instructions and 
data by reducing the size of the caches available for the 
remaining instructions and data. 

DSP processors have traditionally avoided caches, 
relying instead on small amounts of on-chip memory. This 
memory is often treated as a manually controlled cache. 
Developers explicitly transfer instructions and data between 
on-chip and off-chip memory. DSP processor caches usually 
differ from those found in general-purpose caches. As noted 
in [6], the key differences between general-purpose 
processor caches and those of DSP are: 

1. DSP processors use instruction caches (or no caches 
at all) but very rarely use data caches. 

2. DSP processor instruction caches are generally 
much smaller than general-purpose processor 
instruction caches. They are often integrated into 
the processor core itself, as a part of the processor’s 
control unit. 
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3. DSP processor instruction caches are usually 
supplemented by additional on-chip non-cache 
SRAM. 

4. DSP processor instruction caches are usually simpler 
in their organization and operation than general-
purpose processor caches, and as a result their impact 
on execution time is usually more predictable. 

5. DSP processor instruction caches are more 
specialized than general-purpose processor caches. 
Often they are used only in conjunction with special 
instructions designed to provide low-overhead 
looping constructs. 

DSP Processor cache case studies 

C. Texas Instruments C6211/C6711 Caches 
C6211 is a fixed-point and C6711 is a floating-point 

DSP processor. They do not differ in their memory 
architectures. Further I’ll talk of both processors while 
mentioning only the C6211 device. 

C6211 provides two level memory architecture for the 
internal program and data busses. The first level memory for 
both the internal program and data bus is a 4K-byte cache, 
designated L1P for the program cache and L1D for the data 
cache. The second level memory is a 64Kbyte memory block 
that is shared by both the program and data memory busses, 
designated L2. 
Table 1: TMS320C6211 Cache architecture 

Cache Space Size (Bytes) Associativity Line Size (Bytes) 

L1P 4K Direct 64 

L1D 4K 2-way 32 

L2 64K 1- to 4-way 128 

 
1) Level-one Data Cache (L1D) 
The L1D is organized as a 2-way set associative cache 

with a 32-byte line size. Set associative cache provides 
additional flexibility to a direct mapped cache. This cache 
architecture is beneficial for DSP data, which tends to be 
more random and have larger strides than program data. 

Each way in the L1D caches 2Kbytes of data. 2-way set 
associative cache reduces the chance of a cache thrash since 
two thrashing addresses can be stored in the cache 
simultaneously. This is a beneficial architecture for DSP 
data, which often accesses multiple arrays simultaneously, 
such as arrays of coefficients and samples. A 2-way set 
associative cache is an advantageous design since the CPU 
has two data paths, which could simultaneously access two 
different data arrays. The L1D minimizes the chance of these 
two data paths thrashing. 

The L1D replaces data with a Least Recently Used 
(LRU) replacement strategy. LRU replacement chooses 
which set to update with new data by determining which of 
the two cache ways was accessed least recently. The new 

data is then placed in the appropriate set of that least recently 
used way. LRU is the best replacement strategy for set 
associative caches because of the temporal locality of data – 
once data has been used it will be probably needed again 
within a short time. 

2) Level-one Program Cache (L1P) 
The L1P is organized as a direct mapped cache with a 

64-byte line size. A direct mapped cache is well suited for 
DSP algorithms, which tend to consist of small, tight loops 
that rarely thrash. The L1P line size provides a modest 
prefetch of the next fetch packet, eliminating the startup 
latency for fetching that packet. 

In direct mapped cache every cacheable memory 
location maps to only one location in the cache. Thus, the 
cache controller needs to check only one location in the tag 
RAM to determine if requested data is available in the cache. 
DSP algorithms primarily consist of loops that execute the 
same program kernel many times on multiple data locations. 
Such algorithms remain in a loop for a long before 
proceeding to the next kernel. The L1P is large enough to 
hold several typical DSP kernels simultaneously. Since these 
kernels execute sequentially, they will not thrash in the L1P. 
Thus, a simple direct mapped cache is all that is needed to 
achieve considerable program performance without requiring 
complex caching hardware. 

When a cache miss occurs, the L1P requests an entire 
line of data from the L2. In other words, both the requested 
fetch packet and the next fetch packet in memory are loaded 
into the cache. Since most applications execute sequential 
instructions, there is a high likelihood that the next fetch 
packet will be immediately available when the CPU requests 
it. Thus, the startup latency to fetch the next fetch is 
eliminated by eliminating the startup latency and reducing 
misses reduces the execution time of an application 
considerably compared to a cache with a smaller line size. 

3) Level-two Cache/Unified Memory (L2) 
The L2 is a 64-Kbyte SRAM divided into four 16-Kbyte 

blocks. The L2 is a unified memory, used for both program 
and data. The amount of program or data in the L2 is 
configurable. For example, if the application requires only 7 
Kbytes of program space and 57 Kbytes of data space then 
both could be linked into the L2 at the same time. Likewise, 
if the application needed more program space than the data, 
the majority of the L2 RAM could be linked as program 
space. 

Each of the four blocks can be independently configured 
as either cache or memory mapped RAM. This allows 
dictating the amount of the L2 that is used as cache and how 
much is used as RAM. If the application uses some data, 
which must be accessed quickly, that data can be linked into 
an L2 block, which is configured as RAM. The rest of the L2 
can be configured as cache, which will provide high 
performance operation of the remaining program and data. 

By unifying the program and data in the L2 space, the 
L2 cache is more likely to hold the memory requested by the 
CPU. It enables the on-chip memory to contain more data 
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than program when highly computational, looping code is 
being run to process large data streams. For long, serial code 
with few data accesses, the L2 may be more densely 
populated with program instructions. The unification allows 
allocating the appropriate amount of memory for both 
program and data and keeps the on-chip memory full of 
instructions and data that are most likely to be requested by 
the CPU. 

Texas Instruments have adopted a new cache scheme in 
DSP. Such scheme has never been tried before because of 
the indeterminacy that is brought by the L1/L2 cache levels. 
DSP applications increase in size and processor 
manufacturers cannot provide enough on-chip memory to 
place these applications. Thus, two-level caches might 
become more popular in the future. 

D. Motorola DSP56300 Cache 
The Motorola’s DSP56300 device has only the 

instruction cache. When enabled, it comprises 1024 24-bit 
words of program memory. The purpose of this user-
transparent instruction cache is to lower the requirements for 
expensive, high-speed memory. 

The cache is 8-way fully associative. Least recently used 
algorithm is used for sector replacement. 

Programmer can lock each cache sector ( out of the 8, 
each consisting of 128 24-bit words). Locking a sector 
prevents its replacement in case of a miss even if it would 
have been its turn to be replaced. 

The cache can be flushed with one instruction (for 
example, for task switching). 

The penalty incurred for a cache miss is identical with 
the one for a regular instruction fetch from external memory. 

Conclusions 
Caches in DSP processors appeared not a long time ago. 

Their use have been delayed mostly because of their 
probabilistic performance increase which they bring to DSP 
applications. It’s difficult to meet real-time constraints when 
using caches. First, there appeared simple instruction buffers, 
then instruction and data caches. Texas Instruments came up 
with a two level cache architecture. The use of caches is 
mostly motivated by cost – large on-chip memory is 

expensive. As DSP applications become larger, we expect 
more DSP processors incorporate caches. Processor 
manufacturers leave freedom to programmers – caches can 
be disabled, cache sectors can be locked. Further, the author 
of this report is going to benchmark the C6211 two-level 
cache with DSP application benchmarks such as GSM-EFR 
encoder/decoder, Viterbi. 
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