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Introduction 

There can be developed many various mechanisms and 
devices, which employ vibrations for the transportation 
and dosing of fluids and particle type materials. For this 
purpose piezoactive materials have been used. Their 
physical and technical parameters are especially suitable 
for development of precision devices [1,2].  

A few schemes of the mentioned mechanisms will be 
analyzed. The main vibration characteristics of the 
elements, which influence the dynamics of transferred 
bodies, are evaluated using the method of finite elements 
[3,4,5]. 

Supply of fluids caused by vibrating rigid body 
under deformation 

Depending on the design, transportation elements can 
be of the open (Fig. 1) and closed (Fig. 1) type. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Models of supply and dosing devices: a - open type,  
b - closed type 

Transported objects, namely particles of a solid and 
the fluid, are also shown in the figure above. Finite 
element method is applied for the investigation of 
dynamics of transporting elements. The operation principle 
of the devices in hand is based upon the appearance of 

friction forces between the transporting elements and 
transported objects. The friction forces are caused because 
of the normal reaction in the pair element-object. Usually a 
dry friction coefficient is used in these calculations, and 
the components of  viscous friction are used more rarely. 
The friction force in an element acting upon some object 
and the external forces cause the motion of bodies or 
fluids. 

Various types of vibrators can be used for excitation of 
vibrations in the transporting element. In precise 
equipment ceramic materials are most often used as 
vibration sources. The traveling wave deformations are the 
most suitable to be excited using a few vibration sources of 
the same frequency, which are fixed to the transporting 
element at a specified distance and choosing appropriate 
vibration phases. 

 

There are investigated open- and closed-type 
transporting elements, the surface vibrations of which 
carry viscous fluids. Dynamics of the structural elements is 
described by the following differential matrix equations: 

0}{}]{[}]{[}]{[ =+++ FKcM δδδ&& , (1) 
where [M] is the mass matrix, [C] is the damping matrix, 
[K] is the stiffness matrix, {F} is the load vector, {δ} is the 
vector of generalized displacements. 

The problem of eigen values is solved by the 
generalized Jacobi method [6]. The finishing condition for 
iteration process is the relative error of eigen values in 
sequential iterations. 

The calculations of the dynamic equation are 
performed and the obtained results give a practical base for 
the improvement of existing transportation mechanisms 
and development of new designs. 

The dynamical equation, when there is no damping 
and excitation, becomes of the following form: 

0}]{[}]{[ =+ δδ &&MK .  (2) 
It has a solution 
{δ}={δ}cosωt, (3) 

when 
.0}]){[]([ 0

2 =− δω MK  (4) 
This is possible only if 

.0][][ 2 =− MK ω   (5) 

The frequencies and shapes {δ0} are obtained in the 
above described way. Own forms are orthogonal and are 
normalized as follows 

ijj
T M δδδ =}]{[}{ 00 , (6) 

where (δij)  is the Kroneker symbol. 
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A model of a thin bar filled with fluid 

The fluid is described by the following system of 
equations: 
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where ū, u are the longitudinal velocities of the fluid and 
the displacement of the bar. The friction force is 
proportional to the square of relative velocity, Ec /2 ρ=− , 
where Ē is the fluid stiffness modulus, although for 
evaluating the stiffness of walls another value of Ē can be 
used. 
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Fluid pressure causes a longitudinal force in the bar: 
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There is investigated an element interpolated by a first 
order Ermitt polynomials. In order to select the derivatives 
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where x12 is the coordinate of an intermediate node 
determining the geometry. As node parameters are bar 
displacements and longitudinal fluid velocity and their 
derivatives with respect to S. The fluid velocity is 
interpolated as a scalar quantity. According to common 
displacements and value of the velocity it is calculated on 
the past moment: 
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were F is the  fluid cross-section area; t∆  is the step; pij is 
p at the past moment in the particular integration point, 
later given  pij -is p. 

Matrix expressions have the following shape: 
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where βu, βv – longitudinal and traverse elastic Winkler 
base stiffnesses; Fpm = , αu, αv – longitudinal and 
traverse damping of the bar. 

Common model and calculation of interaction 
between fluid and elastic body 

The motion of fluid can be described by the following 
system of equations:  
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After some substitutions: 
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Taking into account some convective members: 
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Fig. 2. Contour geometry of a fluid and a elastic body 
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The convective members when µ =0, are estimated as 
loading. The axially symmetric case is investigated and the 
matrix equations of elastic body and fluid can be derived, 
then: 

[ ] [ ] [ ]M N N dvT= ∫ ρ ;  

[ ] [ ] [ ] [ ] [ ][ ]( )C N N B D B dvT T= +∫ µ ;  

[ ] [ ] [ ][ ] [ ] [ ]( )K B D B B C B dvT T= +∫ ρ 2 ;  

Here: [ ] [ ] [ ]D D D= +
~ β , 

β  is the coefficient of internal damping of elastic 
body; 

ρ  is the density of elastic body or density of fluid; 
µ is the external damping of elastic body; 
[ ]D  is the relation matrix between stresses and 

deformations in fluid; 
[D] is the matrix of elastic constants of elastic body; 
C is the sound velocity in fluid; 
[B] is the relation matrix of volume extension with 

displacement. 
Using the method of Lagranze--Euler the convection 

can be evaluated. Initial { } { } { }δ δ δ, & , && values can be 

recalculated for internal nodes, taking into account their 
displacement with constants ui, & , &&u ui i , the pitch, adjusting 
interpolation. 

a1+a2+a3y+a4xy+a5(x2+y2). 

The construction (Fig.3) of natural (eigen) design is 
investigated. Here the radial coordinate of the first node – 
4; of the 21th - 8; 3 node – 3,8; the first nodes vertical 
coordinate 0; 5 node – 4; 11 node – 0,2; 15 node – 4,2. The 
coordinates of nodes are described , using Sirendin’s 
square rectangular. It is accepted that ρ = 0,002; c2=80. 
The velocity of all surface is assumed zero in two 
directions (because of viscous fluid). The values of natural 
vibrations are obtained: 4,739; 4,925; 4,962; 7,545; 7,832; 
8,703; 11,35; 11,91. 
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Fig. 3. Fluid discreditation 

The construction was investigated, the zero boundary 
conditions are assumed for vertical walls, and for 
horizontal walls – periodical. Two rows of right nodes are 
of elastic body. The natural forms are calculated, when 

E=0.8⋅104; v=0,3. The parameters of fluid are ρ=0,001; 
c2=1440000. The radial coordinate of the first node 2; 4th 
node – 8; vertical coordinate of the first node – 0; 7th 
node - 12. The value of the first natural vibrations: 0; 0; 0; 
318,0; 322,6; 495,3; 497,0; 632,4; 632,5; 706,3; 715,0; 
936,3. The first three natural forms in fluid has only 
vertical displacement. 

The dynamics calculation has been done when the 
parameters of elastic body − β=0,4⋅10-7; fluid − µ=0,00008. 
The frequency corresponding to the exciting period 632. 
General coordinates with loading (Fig.4), when loading is 
sine curve, amplitude 100, phase F1 equal 0, and F2 equal 
2π/3, F3=4π/3. 
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Fig. 4. Fluid and elastic body discreditation 

Because (as) the system of elastic body is accepting as 
partial time differential then the value is &Fi . The pitch is 
equal 1/16 of decreasing period. The initial conditions are 
zero. The integration is done using Newmark constant 
average acceleration scheme. After 200 steps the 
maximum velocity at this moment is in he 27th node of the 
construction in vertical direction and equal 2,02. 

The response of the system to the settled harmonic 
excitation is calculated. After that the static problem 
depending on average loading is solved. 

The construction (Fig. 4) is analyzed, when F2=F3=0, 
F1=100 ejωt. The constant value of velocity proves that 
there can be vertical displacement at each of the three 
rows: fluid as elastic body. Zero value of constant velocity 
for elastic body is obtained too. The calculation results are 
presented in Table 1. We can see, that reaction to harmonic 
excitation is displayed only to the velocity in vertical 
directions, to each row of vertical nodes and distinct 
vibrations in fluid disappeared. 
Table 1 Calculated rezults 

Nr. of nodes 

row to the center 

1 2 3 4 5 6 

Amplitude 8,53 8,53 19,9 58,6 189 159 

Phase, rad -3⋅10-5 3,1415 -3⋅10-5 3,1415 -3⋅10-5 -2⋅10-5

 
In case of torsion we can assume, that displacement 

according to the angular coordinate Θ(Fig.2) in the 
cylindrical system of coordinates is function W(r,z), then: 
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In this problem the compression of fluid is 
insignificant because of volume pressure which is 0. 

The response to harmonic excitation of the 
construction which height is 12, r is from 0 to 6; 7 – the 
rows of vertical and horizontal nodes, is calculated. When 
r=0 and r=6 – we have kinetic excitation; two rows are 
external elements of elastic body; others are of fluid; 
E=0,8⋅104; ν=0,3; for the elastic body ρ=0,002; β=0,4⋅10-7; 
µ=0,00008; for fluid ρ=0,001, frequency 632; the 
amplitude of kinetics excitation 100. 

The calculated results are presented in Table 1. The 
obtained results make it possible to conclude that the fluid 
motion is not depending on z and the amplitude is 
decreasing from the wall’s excitation to the center 
direction. 

Conclusions 
For investigation of dynamics of the fluid supply 

mechanism elements the generalized mathematical models 
were constructed and the theoretical basis for their 
operations were developed. The theoretical investigation 
using analytical and numerical methods and applying 
integration procedure of differential equations with respect 
to the vibration eigen values was carried out. 3-D model of 
a bar-type element, which evaluates the displacement of 
convective components, inertia and deplanation of spin-
type element was developed. 
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A. Bubulis 

Tampriai virpančių tiekimo ir dozavimo mechanizmų teoriniai 
pagrindai 

Reziumė 

Straipsnyje pateikiami tampriai virpančių skysčių tiekimo ir 
dozavimo mechanizmų teoriniai pagrindai. Tiriami atviri ir uždari 
transportavimo elementai, kurių paviršiaus virpesiai neša klampius 
skysčius. Pateikiamas plono strypo su skysčiu modelis, bendras modelis ir 
skysčio sąveikos su tampriu kūnu skaičiavimas ir rezultatai. 
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