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Introduction 

Real-time digital signal processing algorithms such as 
filters, FFTs, speech coding algorithms, etc. can be 
realized on Digital Signal Processors (DSPs) using 
assembly language. As the size of DSP applications 
increase programming such algorithms in assembler is a 
time and cost consuming task, because it requires a 
thorough knowledge of both the processor architecture and 
the algorithm to write an efficient assembly code. 

To reduce programming cost and to increase 
reusability of the code high-level languages (e.g., C and 
C++) and their compilers can be used. However, it is a 
well-known fact that in most cases a compiler-generated 
code for DSP processors has lower performance in terms 
of execution time and memory usage than a hand-
optimized code. Consequently, to increase code 
performance selected portions of the compiler generated 
code may have to be rewritten in assembler. Therefore, a 
unified performance evaluation of the DSP processor and 
the associated compiler becomes relevant. 

The evaluation may consider different aspects such as 
speed (i.e., execution time), reliability, utilization of 
memory and functional units or power consumption. 

The maintainability (or reuse) aspect is also very 
important if the same piece of code should by executed on 
different processors [1]. 

In the past benchmarking of digital signal processing 
hardware was conducted almost only by the chip vendors 
themselves [2,3]. Within the last decade independent DSP 
analysts such as BDTi [12], EEMBC [13] and DSPstone 
[2,3] employed a benchmarking methodology for DSP 
compilers that compares the performance of the compiled 
C-code to the hand-optimized assembly code in terms of 
program/data memory consumption and execution time. 
The hand-optimized code can be considered optimal, and 
by analyzing the generated assembly code it is possible to 
identify the parts of the C-code that were interpreted 
differently by the compiler. 

A revised C compiler benchmarking methodology was 
proposed in [4]. This methodology, applied to three 
different types of DSP architectures, such as enhanced 
conventional DSP processors, superscalar DSP processors, 
and VLIW DSP processors, shows that in many cases 
efficient implementation of a particular DSP application 
depends on the selected architecture as well as on the 
complexity of the DSP application. The methodology also 
helps to analyze how much the compiler-generated code 
differs from optimal (i.e., assembly code), to identify the 

strong and weak parts of the compiler, and to investigate, 
which features of the architecture may influence the 
performance of the C compiler. 

The evaluation of C compilers is a widely discussed 
topic of recent scientific investigations. In [5] instruction 
scheduling and register allocation are discussed as 
important compiler efficiency influencing factors. This is 
because parallel execution of multiple instructions requires 
correct instruction combination as well as appropriate 
operands and data types. 

In this paper we analyze the C-compiler for the Texas 
Instruments TMS320C55x (C55x) processor using two 
well-known computationally intensive algorithms (FIR 
filter and LMS algorithm). We present an approach 
consisting of a sequence of directed experiments that helps 
to analyze and exploit some important features of the 
TMS320C55x architecture such as dual multiply 
accumulate unit (dual MAC) and instruction level 
parallelism. In [11] Texas Instruments recommend non – 
standard C coding guidelines that help to exploit the dual 
MAC unit using a direct form I of block FIR filter kernel 
as an example. In our experiments we use a direct form I 
transposed implementation of block FIR filter and propose 
a different approach to dual MAC exploitation while 
recording code size and cycle count for the experiments. 

The remainder of the paper is organized as follows: 
Section II gives a brief overview of relevant features of the 
C55x architecture, Section III describes some of the 
optimization techniques used in our investigation, Sections 
IV and V present results and an analysis of these results 
and final conclusions are presented in Section VI. 

Architecture description 
The Texas Instruments TMS320C55x is a multi-issue 

16-bit fixed-point DSP processor family. The main 
features of C55x are as follows: 

- Five functional units: Instruction Buffer Unit (I-
Unit), Program Flow Unit (P-Unit), Address-Data 
Flow Unit (A-Unit), Data Computation Unit (D-
Unit), Memory Interface Unit (M-Unit); 

- Two Multiply Accumulate Units (dual MAC), two 
ALUs, and four accumulators; 

- Five 16-bit data busses: three for data read and 
two for data write; 

- Variable instruction width architecture. The width 
of the instruction word can vary between 8 and 48 
bits; 

- Multi issue: executes up to two instructions in 
parallel. 
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The exploitation of variable instruction width could 
lead to smaller program memory usage, while employment 
of the dual MAC architecture as well as dual ALUs and 
four accumulators could lead to parallel execution of 
instructions. However, there is no hardware-based 
scheduling of instructions; therefore the parallelism has to 
be detected and scheduled at compile time. 

The main requirements for parallelism exploitation are 
in general that the resource constraints of the architecture 
are respected. This implies in particular that [6]: 

- Two instructions can be executed in parallel if 
assembled they do not exceed 48 bits (6 bytes); 

- Each instruction makes no more than a single data 
memory access; 

- Memory, cross unit and constant busses do not 
compete for access; 

- Parallelism is allowed between operations executed 
within the A-unit, the D-unit or the P-unit; 

- Parallelism between subunits within the A-unit, D-
unit or P-unit is allowed. 

Optimization techniques 
Algorithm kernels are used for compiler benchmarking 

in all references [2,3,4,7,8]. Such kernels as FFTs, FIR 
filter, etc. are the building blocks of many DSP 
applications. A large percentage of the execution time is 
spent in these computationally intensive kernels, which can 
significantly influence the overall execution time of the 
program. The advantages of using kernels are: 

- their simplicity for implementation and 
optimization in assembly language,  

- the possibility for reuse in many different types of 
applications, 

- the possibility to measure the processor 
performance in these kernels. 

In our approach we analyze the compiler-generated 
code, and estimate the compiler’s ability to exploit the 
features of the given architecture. 

As discussed in [10], compiler optimization techniques 
operate on three levels: machine dependent, describing the 
instruction-level sensitivities of a compiler (Coding Style 
Transformations), architecture dependent, denoting those 
parts of a program that relate to the general hardware 
implementation, but not to a specific machine (e.g. 
Multiple MAC Units, Parallel Instruction Execution or 
Multiple Data Streams) and architecture independent, 
related to those aspects of program formulation that do not 
depend on a particular computer system or even on a type 
of implementation, like pipeline processing (Common Sub-
expression Elimination, Dead Variable Elimination, Code 
Motion or Constant Propagation). Our investigation covers 
optimization techniques that allow dual MAC and 
instruction level parallelism exploitation. 

Consider an FIR filter with impulse response h and 
input x, where the output y is given by Eq.1. 
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A parallel execution of an FIR filter on the ‘C55x can 
be performed using 3 data busses and produces two outputs 

as shown in Fig.1. This is done by computing two 
sequential filter iterations (e.g., outputs y(n) and y(n-1))  in 
parallel when both MAC units utilize a single coefficient, 
h(m) as shown in Equations (2) through (5): 
 

y(n)    =  h(0)*x(n)   +    h(1)  *x(n-1) + ... +  h(N-1)*x(n-N-1).    (2) 

y(n-1) =  h(0)*x(n-1)+    h(1)  *x(n-2) + ... +  h(N-1)*x(n-N-2).   (3) 

y(n-2) =  h(0)*x(n-2)+    h(1) *x(n-3)  + ... +  h(N-1)*x(n-N-3).    (4) 

y(n-3) =  h(0)*x(n-3)+    h(1) *x(n-4)  + ... +  h(N-1)*x(n-N-4).    (5) 

This approach is called time-based loop unrolling, 
[14]. 

For the first term in each of these two rows, the first 
MAC unit could compute the h(0)*x(n), while the second 
MAC unit could compute h(0)*x(n-1). For these two 
computations only three different values are required, i.e., 
h(0), x(n), and x(n-1). Three available data-read busses 
(DB, CB, BB) permit reading these three data values from 
separate memory units in one instruction cycle. In the next 
cycle, h(1)*x(n-1) and h(1)*x(n-2) are computed similarly 
and added to the previous result, until both of the output 
vector samples are computed. In this way, DSP 
performance at two MAC operations per clock cycle 
should be maintained. 

 
DB (16)

BB (16)
CB (16)

*

+ +

*

AC0 AC1

x(n-m)
h(m)

x(n-m-1)

MAC
#1

MAC
#2

y(n) y(n-1)

Previous
AC0 / AC1

 

Fig. 1. FIR filter on C55x 

A similar implementation is expected for the LMS 
algorithm kernel as it is based on FIR filtering. 

To evaluate the compiler/architecture interaction the 
chosen algorithm should reveal the correspondence 
between language features expressing: 

• Data access, 
• Loop constructs, 
• Arithmetic, 

 
and architectural features such as: 
 

• Addressing, 
• Zero overhead looping, 
• Computational resource utilization (dual MAC), 
• Parallel instruction execution. 
These optimizations applied to the FIR filter kernel are 

discussed in the following section. Metrics for the selected 
experiments are presented. 
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Results and analysis 
Figure 2 shows one possible sequence of experiments 

leading to parallel instruction execution. 
The experiments were based on the execution time 

profiling information from the selected FIR and LMS 
kernels. Both kernels are implemented as functions with 
appropriate parameters. This is natural considering usage 
of these kernels in larger applications. 

Functions are declared as void, variables are declared 
using native processor data types in order for compiler to 
select the optimal instructions. Thereby the compiler could 
map an operation into single instruction, or execute 
instructions in parallel if possible. 

Experiments were performed with a combination of 
manual, automatic and pragma specified C code 
transformations using the Texas Instruments Code 
Composer Studio, Version 2.0. The full symbolic debug 
and interlisting modes were turned off during the 
experiments. 

Experiments E1-E4 denote the most successful order 
of optimizations to exploit instruction level parallelism. C 
code and generated assembly code obtained for E1-E4 
experiments are explained afterwards. All the results are 
presented for a 16 tap FIR filter, producing 40 output 
samples. Some observations for a smaller number of filter 
taps are also made. 
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Fig. 2. Directed sequence of experiments 
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Fig. 3. Results for FIR filter 

 

Figure 3 shows the results obtained. As seen, the 
compiler optimizer is capable of reducing the cycle count 
from 14,893 to 2,066, just by using built-in optimizations 
supplied by –o2 and -o3 compiler options, [9]. 

E1: Initial version with Loop Unrolling 
optimization 

In order to generate dual MAC instruction, compiler 
maximum optimization options –o3 -mb should be 
enabled. After applying these options to the FIR filter 
kernel, this version was named “initial”, and was used as a 
starting point for the optimizations in Experiments E2 
through E4 shown in Figures 5 through 7. 

The C code for the “initial” version of FIR filter kernel 
as well as the generated assembly code are shown in 
Figure 4. In this version of code, filter coefficients h[ ], 
input samples x[ ], and output vector y[ ] were defined as 
global variables. 

 
C Code Assembly Code 
 
void fir(const  
         int h[],     
         int x[],  
         int y[]) 
 
{ 
int n,m; 
 
n=nSamples-1; 
while (n >= 0)  
 { 
      m = 0; 
      while (m <nTaps ) 
   { 
    y[n]+=h[m]*x[n-
m];  
    m++;  
   } 
  n--; 
 } 
} 
 
 
 
 

 
MOV #((_y+38)&0xffff),AR3        
 MOV #39, T1 
 MOV #19, BRC0 
 MOV #15, BRC1 
 RPTBLOCAL L6-1 
            ; loop starts 
L3:     
 ADD #(_x &0xffff),T1,AR4 
  MOV #(_h & 0xffff), AR2 
  SUB #1, AR4, AR1 
   RPTBLOCAL L5-1 
            ; loop starts 
L4:     
  MOV *AR3(short(#1)),AC0 
  MACM *AR4-,*AR2,AC0,AC0 
  MOV AC0,*AR3(short(#1))   
  MOV *AR3, AC0   
 MACM *AR1-,*AR2+,AC0,AC0  
  MOV AC0, *AR3                  
            ; loop ends 
L5:     
      SUB #2, T1 
      SUB #2, AR3 
           ; loop ends 
L6:     
    return                     
           ; return 

Fig. 4. Experiment E1 (Initial version with Loop Unrolling) 

The generated assembly code reflects that the compiler 
recognizes the possibility for the while( ) loops to be 
translated into a block repeat instructions (RPTBLOCAL) 
using two branch counters, BRC0 and BRC1. It 
understands that the += (accumulate) and * (multiply) 
operators can be translated into one multiply-add 
instruction. 

The compiler also performs automatic loop unrolling.  
The loop unrolling does not help the compiler generate 
dual MAC instructions, however, and the compiler instead 
replicates the inner loop twice producing two sequential 
MAC instructions. In addition, on each iteration of the 
inner loop the compiler loads and stores elements of y[ ] 
that do not change until the next iteration of the loop.  It is 
especially these unnecessary loads and stores that cause 
additional cycle counts in this experiment. 

It may not be surprising that the compiler makes these 
choices, because the input array x[ ] is not specified as a 
const array. Omitting the const qualifier from the input 
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array x[ ] implies that the compiler should assume that 
elements of x[ ] may be overwritten during the execution 
of the function, for example if y[ ] points to somewhere in 
x[ ]. Hence, the compiler should assume that elements of x[ 
] may be overwritten during the each iteration of the inner 
loop. 

An attempt to use the const qualifier for both x[ ] and 
h[ ] resulted in a compiler error in experiment E1. The 
compiler evidently realized that loop unrolling and dual 
MAC was possible, because it generated the following 
assembly language code for the inner loop: 
  
    MACM *AR1-, *AR2+, AC0, AC1  ||  MACM *AR4-, 
*AR2, AC1, AC0 

 
Unfortunately, this combination of instructions is 

illegal, as two instructions combined in parallel cannot 
consume more than six bytes of memory for decoding. 
Thus the compiler aborts with an error. Therefore 
experiment E1 was performed without qualifying x[ ] with 
the const keyword to avoid this compiler defect. 

The compiler understands the index arithmetic used to 
select elements in x[ ], h[ ], and y[ ] arrays, and translates 
this into efficient indirect addressing with post-increment 
and post-decrement operations. 

E2: Forward Store 

As mentioned, initially a global variable for the 
summation of y[ ] was used. While using global variables, 
the compiler is obligated to perform an intervening store or 
load to memory during the execution of the loop. 

In Forward Store optimization, [7], store to a global 
variable y[ ] is done by performing the summation in a 
local variable accum and storing the final result to y[ ] 
outside the loop afterwards.  

According to [15], ‘C54x and some other DSP 
compilers are not performing Forward Store optimization. 
Our investigations have shown that the same optimization 
is absent in the ‘C55x compiler, and it is therefore 
necessary to do it explicitly. 

As seen in Figure 5, the compiler understands that the 
local variable accum does not change until the next 
iteration of the inner loop, and eliminates the unnecessary 
loads and stores that hampered performance in experiment 
E1. 

Thus leaving only a multiply-accumulate operation 
inside of the inner loop, the compiler also realizes that loop 
unrolling enables dual MAC performance in the inner loop. 
Hence, with a simple forward store optimization, the 
compiler rewrites the inner loop to a single-instruction dual 
MAC loop. 

Experiments also showed that automatic loop unrolling 
is not observed when the inner loop is repeated less than 12 
times. When unrolling the loop manually in C and 
applying all the optimizations discussed so far the 
desirable performance is not obtained either. In both cases 
the compiler generates a one-to-one translation of the code 
and does not recognize the computational grouping 
necessary for dual MAC exploitation and hence the 
possibility to generate the dual MAC instruction. 

 

C Code Assembly Code 
 
void fir(const 
         int h[],    
   const int x[],  
         int y[]) 
{ 
int n,m,accum; 
 
n=nSamples-1; 
while (n >= 0) 
 { 
  m = accum = 0; 
  while( m < nTaps 
) 
   { 
   accum+=h[m]*x[n-
m]; 
   m++; 
   } 
  y[n]=accum;         
  n--; 
 } 
} 

 
MOV#((_y+38)&0xffff),AR4 
 MOV #39, AR1  
 MOV #19, BRC0 
  RPTBLOCAL L6-1 
            ; loop starts 
L3:     
  ADD #(_x&0xffff),AR1,AR3 
  SUB #1, AR3, AR2 
  MOV #(_h & 0xffff), CDP 
  MOV #0, AC0  
   RPT #15 
|| MOV AC0, AC1  
 
            ; loop starts 
L4:     
MAC *AR2-, *CDP+, AC1 :: MAC 
*AR3-, *CDP+, AC0 
            ; loop ends 
L5:     
  MOV AC1, *AR4   
  MOV AC0, *AR4(short(#1))  
  SUB #2, AR4 
  SUB #2, AR1 
        ; loop ends 
L6:     
        return 

Fig. 5. Experiment E2 (Forward Store) 

 
For a number of taps less than 12, the compiler 

generates a MACM instruction. Therefore, in order to 
generate a dual MAC instruction, the pragma UNROLL 
has to be applied in this case. 

The compiler also arranges housekeeping instructions 
so that pairs of instructions can be executed in parallel. 

E3: Counter 1 (Final version) 
In the experiment E3 in Figure 6, the compiler does 

not take advantage of our attempt to make it explicit to the 
compiler where the indexes are to be updated. 

 
C Code Assembly Code 

 
void fir(const 
         int h[],   
   const int x[],   
         int y[]) 
{ 
int n,m,accum; 
 
n=nSamples-1; 
while (n >= 0) 
 { 
  m = accum = 0; 
  while(m<nTaps) 
   { 
accum +=h[m]*x[n-
m++]; 
   } 
  y[n--]=accum; 
 } 
} 
 

 
MOV #((_y+38)&0xffff),AR4 
 MOV #39, AR1 ;  
 MOV #19, BRC0 
  RPTBLOCAL L6-1               
          ; loop starts 
L3:     
 ADD #(_x&0xffff),AR1,AR3 
 SUB #1, AR3, AR2 
 MOV #(_h & 0xffff), CDP 
 MOV #0, AC0 
   RPT #15 
|| MOV AC0, AC1  
          ; loop starts   
L4:     
MAC *AR2-, *CDP+, AC1 :: MAC 
*AR3-, *CDP+, AC0 
          ; loop ends 
L5:     
 MOV AC1, *AR4 
  SUB #2, AR4 

|| MOV AC0,*AR4(short(#1))  
  SUB #2, AR1          
          ; loop ends 
L6:     
  return  ; return occurs 

Fig. 6. Experiment E3 (Counter 1 (Final version)) 

This is not surprising, because the compiler has 
already translated the index arithmetic into efficient 
addressing in the preceding experiments, and experiment 
E3 does not yield lower cycle counts than experiment E2. 
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E4: Counter 2 
A common optimization technique is to simplify array 

index operations as shown in Experiment E4 in Figure 7.  
 

C Code Assembly Code 
 
void fir(const 
         int h[],  
   const int x[],      
         int y[]) 
{ 
int n,m,t,nstart; 
 
n=nSamples-1; 
while (n >= 0) 
 { 
  m = accum = 0; 
  nstart = n; 
  #pragma UNROLL(1); 
  while( m < nTaps ) 
   { 
   accum += h[m++] *   
        x[nstart—-]; 
   } 
  y[n--]=accum;        
 } 
} 

 
MOV #((_y+39)&0xffff),AR4 
MOV #((_x+39)&0xffff),AR3 
MOV #39, BRC0 
 RPTBLOCAL L6-1 
        ; loop starts 
L3:     
 MOV #(_h&0xffff),AR2 
 MOV #0, AC0  
 RPT #15 
        ; loop starts 
L4:     
MACM *AR3-,*AR2+,AC0,AC0  
        ; loop ends 
L5:     
 ADD #15, AR3 
 MOV AC0, *AR4-  
        ; loop ends  
L6:     
   return       
        ; return occurs 
 

Fig. 7. Experiment E4 (Counter 2) 

We therefore simplified the indices in the inner loop as 
follows: 

 
m = accum = 0; 
nstart = n; 
while( m < N ) 
{ 
    t += h[ m++ ] * x[ nstart-- ]; 
} 

 
To our surprise, this optimisation apparently confused 

the compiler, which refuses to use dual-MAC instructions 
and instead executes the inner loop as a single MAC 
instruction.  Oddly, the compiler also refuses to unroll the 
loop, even faced with the pragma UNROLL meta-
instruction, which should force the compiler to perform 
loop unrolling. 

General observations 

The compiler selected invalid parallel MACM 
instructions when the "const-correct" fir( const int x[ ], 
const int h[ ], int y[ ] ) function was called in the initial 
version of the C code. We believe that the compiler's 
attempt to perform a single-instruction repeat loop using a 
parallel dual-MAC instruction indicates that the compiler 
is capable of recognizing latent optimisations in the C 
code, and that the invalid instruction selection may be a 
simple defect that is unrelated to the compiler's code 
optimisation algorithms. 

The experiments indicate that by emulating a "const-
correct" fir function by virtue of the forward store 
optimisation, the compiler generates code with strong 
performance, using a single-instruction, dual-MAC inner 
loop. 

The cycle count for this particular FIR filter algorithm 
can be computed according to Eq. 6, where nTaps and 
nSamples denote the number of filter taps and the number 
of samples respectively: 

=++= InnerLoopOuterLoopInitCC  
 

( ) =+⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛+= nTapsnSamplesnSamples 3*
2

6*
2

4  

 
 ( )nTapsnSamples

+⎟
⎠
⎞

⎜
⎝
⎛+= 9*

2
4 .   (6) 

 
Cycle counts for BDTi1 and TI2 block FIR filter 

benchmarks are shown in Eq. 7 and 8 respectively. Note, 
that there will not be perfect correspondence between the 
assembly code and the C code benchmarks, since the 
assembly code implementations follow the TI and BDTI 
Benchmark specification, while the C implementations do 
not. 

 
BDTi: 

 ( )nTapsnSamplesnTapsCCBDTi +⎟
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⎛++= 2*

2
18 . (7) 

 
TI:  

 

( )nTapsnSamplesCCTI +⎟
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⎞

⎜
⎝
⎛+= 4*

2
32 . (8) 

Results for LMS algorimh 

The LMS algorithm consists of two inner loops: a FIR 
filter loop as described in section IV and a coefficient 
update loop plus an error calculation statement. 

It is observed that presence of the second loop in the 
algorithm and overwriting the coefficient array prevents 
compiler from generating dual MAC instructions as should 
be expected from the results in the preceding section. 

Another observation made during experiments with 
LMS algorithm is the loop invariant code motion 
optimization. Although this optimization is included in 
compiler optimization package –o3, in our LMS algorithm 
case the compiler only does this optimization partially. 

As seen in Figure 8 a), the expression in brackets (x[n] 
- accum) does not change inside the loop, therefore could 
be moved out of it. The value of mu is also constant, so the 
multiplication by mu could be also moved out. However, in 
this case only the subtraction is moved out of the loop. 

In Figure 8 b), the redundant multiplication together 
with subtraction is moved out from the loop manually. In 
this case the compiler detects the possibility for parallel 
instruction execution. 

Conclusion 
Concluding our experiments, we will now attempt to 

evaluate the results of our approach in a broader 
perspective. 

The algorithm examined is a simple but fundamental 
example used in many DSP applications. Consequently 
only preliminary observations for the C55x platform 
analysis can be made. 

                                                           
1 BDTI Benchmark (TM) results provided courtesy of Berkeley Design 
Technology, Inc. (BDTI).   Copyright (c) 2002 BDTI. 
2 TI benchmarks are given in [16] and [17]. 
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a) C Code a) Assembly Code 
 
for (j = 0; j < nTaps;   
     j++) 
{ 
                          

  
ADD #(_x&0xffff),T3,AR4 
 MOV SP, AR3 
 SUB AC0, *AR2, T2 
 RPTBLOCAL L9-1 
            ; loop starts 
 

 
w[j]+=mu*(x[n]-   
      accum)*x[n-j]; 
} 
                          

 
  MPYM *AR4-, T2, AC1  
  MOV AC1, T1  
  MOV *AR3, AC2  
  MACK T1, #33, AC2, AC1  
  MOV AC1, *AR3+ 
            ; loop ends 
  SUB #1, T3 
  SUB #1, AR2 
 

b) C Code b) Assembly Code 
 
error=mu*(x[n]-accum); 
                      
for (j = 0; j < nTaps;   
     j++) 
{ 
                          

 
  SUB AC1, *AR4, AR2 
  MOV SP, AR3 
   ADD #(_x&0xffff),T2,AR2 
|| MOV AR2, HI(AC0)  
 
   MPYK #33, AC0, AC0  
 
   RPTBLOCAL L9-1 
|| MOV AC0, T1   
            ; loop starts 
 

 
 w[j] += error*x[n-j];    
 }  

 
  MOV *AR3, AC2  
  MACM *AR2-, T1, AC2, AC2  
  MOV AC2, *AR3+  
            ; loop ends  
   SUB #1, T2 
   SUB #1, AR4 
 

Fig. 8. Loop invariant code motion for LMS algorithm: a - performed 
by compiler, b - performed manually 

First we noted that, as expected, the compiler was 
insensitive to alternate C code formulations such as index 
or pointer specification for array references and for- or 
while- specification of loops. 

Then from the cycle counts reported it was obvious 
that optimisation levels -o2 and –o3 encompassing the 
automatic loop unrolling yield the first big leap in 
performance and that the use of forward store/local 
variables accounts for the next reduction. This was also to 
be expected. 

Eq. 6 shows that only 4 cycles are used for 
initialisation and 6 cycles for (each) outer loop. This leaves 
limited room for improvement, and using this result it 
should be possible to identify when further optimisation 
might not be warranted, i.e., to identify the point of 
diminishing returns. 

In future we will present a comparison of our results 
with published BDTi and TI benchmark results. 

The LMS experiment shows that the compiler does not 
produce consistent results when asked to reproduce 
optimisations on sub-problems. The cause of this 
inconsistency remains unknown. 

The proposed approach should be compared to other 
options such as using third-party software or processor 
specific compiler features. In such a comparison not only 
code size and cycle count are relevant; development time, 
cost, and risks as well as the potential for reuse, that is, the 
constraints imposed by real applications, should also be 
considered. 

It seems fair to conclude that the proposed approach 
has a potential for shorter development time while 
maintaining low cycle counts and uncompromising code 
portability. 
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B. Varnagirytė, A. Žemelis, O. Olsen, P. Koch, O. Wolf, E. Kazanavičius 

Praktinis DSP kodo optimizavimo naudojant architektūrinį 
kompiliatorių būdas 

Reziumė 

Nagrinėjamas diskretinių signalų procesorių (DSP) C-kodo 
kompiliatoriaus naudojimo efektyvumas ir jo generuojamo kodo 
optimizavimas, taip pat kodo generavimo technikos tinkamumas 
konkrečiai architektūrai. Darbe pateikti įvairiems DSP uždaviniams 
spręsti atliktų eksperimentų rezultatai. 
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