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Introduction

Ultrasonic nondestructive inspection plays important
role in multilayered structures testing, especially in
aeroindustry, where composites are replacing metallic
parts. Conventional ultrasonic techniques do not always
enable to detect defects like delamination, kissing bonds or
to measure thickness of thin layers, so more advanced
methods must be used. The Lamb waves provide one of the
possible solutions for those problems, but this technique is
much more complicated in application compared with
conventional ultrasonic testing. The inspection technique
based on Lamb waves requires the study of wave
propagation and relies strongly on the predictive modeling
tools to enable the best inspection strategies to be
identified and their sensitivities to be evaluated [1].

The objective of this work is development of Lamb
wave dispersion curves calculation method, suitable for
investigation of multi-layered structures.

Overview of Lamb waves modeling methods

The Lamb waves in single-layered isotropic structure
embedded in vacuum can be described by two
transcendental equations, solution of which describes
symmetric and asymmetric wave modes [2]. The
propagation of Lamb waves in multi-layered structures can
not be described analytically and requires the numerical
approach.

Often for such tasks the numerical elements or matrix
methods are used. Rose has developed hybrid boundary
element method (HBEM) [3]. Cawley uses a finite element
method [4]. Hayashi uses strip element method (SEM) for
delamination analysis [5]. All those methods are almost
unlimited for any structure configuration and waves
generation sources and receivers, but are time consuming
and stability of the solutions very depends on the product
fxd, where f'is the frequency of the Lamb waves and d is
the total thickness of the analyzed multi-layered structure.

The matrix methods require less of a calculation time,
but enables analysis of the limited configuration of the
structures. The Lamb waves dispersion curves can be
calculated by the transfer matrix method, but this standard
method isn't numerically stable, so it is applicable for
limited frequency range and number of layers. There are
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modifications of the transfer matrix method, which are
more stable, but computation speed is slow [6]. In 2001
Wang and Rokhlin published a new reformulated transfer
matrix recursive algorithm by introducing the layer
stiffness matrix [7]. The new modification of the algorithm
is relatively stable in the case of multiple layers.

Global matrix method is other way for Lamb waves
dispersion curves calculation in multi-layered structures
[1]. It is numerically stable and is not sensitive to the
product fxd value. The disadvantage is that the global
matrix may be large and the solution may be slow.
Nevertheless, this method enables simulation of multi-
layer structures taking into account delamination and
kissing bond cases. Because of that, this method was
selected for further analysis and our version of it is
presented in the next paragraphs.

The multi-layered structures definition by the
global matrix method

The multi-layered structure for Lamb waves can be
described by set of 4(n-1) equations, where n is total
number of layers [1]. The equations are written in single
matrix form, which is called the global matrix G:
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where D, - bottom matrix of half space, Dy, - top matrix
of half space, D;;, D, - top and bottom matrix of /-th layer,
[=1+(n-1). The sub-matrixes D,, D, in general defines
reflection and transmission conditions of the top and
bottom boundaries of the layer. The sub-matrixes D, Dy,
describe acoustic loading conditions from both sides of the
analyzed multi-layered structure. This enables simulation
of different immersion techniques. The top and bottom
sub-matrixes can be defined by Eq.2a and Eq.2b, where &
is the Lamb wave wave-number, o is the angular
frequency, ¢; and ¢, are respectively the longitudinal and
shear wave velocities in the layer, p is the density and d is
the thickness of the layer.
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The first and the third columns in matrices Dj, D
represent incident longitudinal and shear (vertical
polarization) waves into the layer respectively. The second
and fourth columns represent transmission of
corresponding waves from the layer. The first two rows
describe displacements in the layer and the second two
rows describe the stresses.

In general, energy equilibrium principle for the acoustic
weaves in the multi-layered structure can be defined using
the global matrix G:

AG=0, 3)
where the vector A represents the amplitudes of the waves
displacements and stresses on the boundaries of the
different layers. In general, the solved values of the vector
A correspond to some mode m of a propagating Lamb
wave with the phase velocity ¢, at the angular frequency
. The dispersion curves can be expressed as the set of the
curves c¢,=flw), where m=1+-M and M is the number of
wave modes under analysis. So, for the dispersion curves
determination it is necessary to determine velocities of
different Lamb waves in the frequency range (@i, @max)-
The valid modal solution of Eq.3 at fixed angular
frequency occurs when complex determinant

detG=0. @)

This solution gives the value of the corresponding Lamb
wave mode velocity ¢,. The problem is that for one fixed
frequency point f;, there may be a number of roots ¢;, ¢a,...,
¢, corresponding to different modes and for determination
of each of them it is necessary to solve this nonlinear
matrix equation. This usually takes a long time. In the next
paragraph the relatively fast and reliable dispersion curves
calculation algorithm is presented.

Dispersion curves calculation algorithm

There are two main factors, which can reduce the
calculation time: the first is the effectiveness of root
calculation method and the second is the reduction of the
points where the solution of matrix equation is performed.
Dealing with the first factor, Lowe gives overview of
different methods such as bisection, Newton-Raphson,
Monte Carlo and etc. used by other researchers [1]. The
secant method is chosen in this work because it does not
need the analytical expression of function derivatives and
has convergence similar to the Newton-Raphson method,
based on analytic function derivatives.

The big number of points where it is necessary to find
the test solution is caused by the fact that at each fixed
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frequency exist many modes of propagating Lamb waves
and as consequence the big number of roots. For the
reliable detection of each of them the search intervals must
be relatively small and this leads to the big number of
calculation points. For reduction of number of these points
the dispersion curves calculations algorithm was divided
into two stages. The objective of the first stage is to find
one, new (not calculated) dispersion curve at the fixed
velocity. The objective of the second stage is to follow
along the detected dispersion curve and in such a way to
calculate the phase velocity values of the detected mode in
the interested range of frequencies.

During the first stage the some initial value of the
Lamb wave velocity cq,, is selected and the step by step
searching for the root of Eq.4 in the frequency range under
the interest (@,uin, Wmax) 18 performed. Such a scanning is
performed until the first root is found, that is, the
frequency wy,, at which the detected mode m have velocity
com.- This means that one point (¢, @) of the dispersion
curve is known.

In the second stage the tracing along the detected curve
should be performed. In the initial part of this stage the
additional four points of the curve are calculated using
small step in frequency domain, that is (com, ®om), (Cims
C()Om+d[l)), (sz, (1)0m+2 d(l)), (C3m, C()om+3 dC()), (C4m, C()om+4
dw). The selection of small step enables to reach required
accuracy very fast, but application of such an approach for
tracing of the complete curve will require a big number of
steps. Because of that, in next steps the fourth order
extrapolation is used for setting of the search interval for a
new point using essentially bigger step Awin the
frequency domain.

So, the dispersion curves
consists of the next general steps:

calculation algorithm

I. Construction of multi-layered structures using global
matrix approach and corresponding properties of each
layer. Also, ranges of frequency and Lamb waves phase
velocities ranges are selected.

II. Searching for the first point of a new dispersion curve:

1. Select initial velocity value c;

2. Select initial angular frequency value wy;

3. Set the root search interval in the frequency domain
(wo-Aw,, wotAw,);

4. Solve the matrix Eq.4 by secant method. Result is

the frequency of the Lamb wave with the velocity
Co.,
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5. If the root does not exist, increase the frequency
value w, and repeat steps the 3-5 again till the root
will be found;

6. The calculated point is selected as the initial point
(com» o) for the dispersion curve tracing;

III. Tracing of the dispersion curve:

1. Calculate Lamb wave velocities at the frequencies
Wotdo, wy,2dw, wy,t3do, oy, t4do;

2. Calculate extrapolation coefficients of the fourth
order polynomial using the last 5 points of the
dispersion curve;

3. Calculate approximate Lamb wave velocity c'new at

the frequency, wg,+Amyig

4. Set the root search interval in the velocities domain
( Cnew — Acr >Cnew Acr );

5. Solve the matrix Eq.4 by secant method. The result
is the Lamb wave velocity ¢, at the frequency
wOmJ'_Aa%ig ;

6. Repeat the steps 2-5 until the frequency range limit
will be reached;

IV. Store the calculated dispersion curve data;
Repeat steps II-IV for calculation of other dispersion
curves.

Modeling results

The two types of layered structures were selected for
analysis. The first structure consists of two layers bonded
together. The first layer is made of steel and the second
one of aluminum. Another structure under analysis was the
five layer composite: three layers of aluminum and two
layers of glass-fiber with bonding material between
aluminum plates. Materials properties are presented in
Table 1. It was assumed that all materials including glass-
fiber with bonding material were isotropic. In all cases was
assumed that the structure is placed in vacuum. Modeling
results are presented in Fig.1 and Fig.2.

Table 1. Material properties.

Structure Material d kgr;;n‘; kfrll’/s kfrsl’/s
T e e R
composite Al_ 0.3 2770 632 | 3.15
bonding 0.25 2500 | 3.15 | 1.72
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Fig. 1.Lamb waves pahase velocity dispersion curves in aluminum-
steel structure.
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Fig. 2. Lamb waves pahase velocity dispersion curves in composite.

It can be seen the complicated dependencies of
velocities, especially for case of the five layer composite
structure.

Conclusions

The Lamb waves modeling methods were reviewed and
the global matrix method was selected for calculation of
Lamb waves dispersion curves in multi-layered plate-like
structures. The robust and simple calculation algorithm of
dispersion curves based on the global matrix method has
been developed.
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Lembo bangy daugiasluoksnése ploks¢iose struktiirose dispersiniy
kreiviy apskaiciavimas

Referatas

Darbe apzvelgti Lembo bangy modeliavimo metodai. Atlikta
globaliosios matricos metodo izotropiniy medziagy atveju analize,
pateiktos sluoksnius aprasan¢iy matricy koeficienty analitinés iSraiskos.
Pasitilytas algoritmas Lembo bangy dispersinéms kreivéms apskaiciuoti,
pagristas globaliosios matricos metodu, ir iSnagrinéti pagrindiniai Sio
algoritmo  realizavimo  etapai.  Pateikti  dispersiniy  kreiviy
daugiasluoksnése lakstinése struktiirose apskaiciavimo pavyzdziai.
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