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Introduction 
Ultrasonic nondestructive inspection plays important 

role in multilayered structures testing, especially in 
aeroindustry, where composites are replacing metallic 
parts. Conventional ultrasonic techniques do not always 
enable to detect defects like delamination, kissing bonds or 
to measure thickness of thin layers, so more advanced 
methods must be used. The Lamb waves provide one of the 
possible solutions for those problems, but this technique is 
much more complicated in application compared with 
conventional ultrasonic testing. The inspection technique 
based on Lamb waves requires the study of wave 
propagation and relies strongly on the predictive modeling 
tools to enable the best inspection strategies to be 
identified and their sensitivities to be evaluated [1].  

The objective of this work is development of Lamb 
wave dispersion curves calculation method, suitable for 
investigation of multi-layered structures. 

Overview of Lamb waves modeling methods 
The Lamb waves in single-layered isotropic structure 

embedded in vacuum can be described by two 
transcendental equations, solution of which describes 
symmetric and asymmetric wave modes [2]. The 
propagation of Lamb waves in multi-layered structures can 
not be described analytically and requires the numerical 
approach.  

Often for such tasks the numerical elements or matrix 
methods are used. Rose has developed hybrid boundary 
element method (HBEM) [3]. Cawley uses a finite element 
method [4]. Hayashi uses strip element method (SEM) for 
delamination analysis [5]. All those methods are almost 
unlimited for any structure configuration and waves 
generation sources and receivers, but are time consuming 
and stability of the solutions very depends on the product 
f×d, where f is the frequency of the Lamb waves and d is 
the total thickness of the analyzed multi-layered structure. 

The matrix methods require less of a calculation time, 
but enables analysis of the limited configuration of the 
structures. The Lamb waves dispersion curves can be 
calculated by the transfer matrix method, but this standard 
method isn't numerically stable, so it is applicable for 
limited frequency range and number of layers. There are 

modifications of the transfer matrix method, which are 
more stable, but computation speed is slow [6]. In 2001 
Wang and Rokhlin published a new reformulated transfer 
matrix recursive algorithm by introducing the layer 
stiffness matrix [7]. The new modification of the algorithm 
is relatively stable in the case of multiple layers. 

Global matrix method is other way for Lamb waves 
dispersion curves calculation in multi-layered structures 
[1]. It is numerically stable and is not sensitive to the 
product f×d value. The disadvantage is that the global 
matrix may be large and the solution may be slow. 
Nevertheless, this method enables simulation of multi-
layer structures taking into account delamination and 
kissing bond cases. Because of that, this method was 
selected for further analysis and our version of it is 
presented in the next paragraphs. 

The multi-layered structures definition by the 
global matrix method 

The multi-layered structure for Lamb waves can be 
described by set of 4(n-1) equations, where n is total 
number of layers [1]. The equations are written in single 
matrix form, which is called the global matrix G: 
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where D1hb - bottom matrix of half space, Dhtn - top matrix 
of half space, Dlt, Dlb - top and bottom matrix of l-th layer, 
l=1÷(n-1). The sub-matrixes Dlt, Dlb in general defines 
reflection and transmission conditions of the top and 
bottom boundaries of the layer. The sub-matrixes D1hb, Dhtn 
describe acoustic loading conditions from both sides of the 
analyzed multi-layered structure. This enables simulation 
of different immersion techniques. The top and bottom 
sub-matrixes can be defined by Eq.2a and Eq.2b, where k 
is the Lamb wave wave-number, ω is the angular 
frequency, cl and cs are respectively the longitudinal and 
shear wave velocities in the layer, ρ is the density and d is 
the thickness of the layer. 
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The first and the third columns in matrices Dlt, Dlb 
represent incident longitudinal and shear (vertical 
polarization) waves into the layer respectively. The second 
and fourth columns represent transmission of 
corresponding waves from the layer. The first two rows 
describe displacements in the layer and the second two 
rows describe the stresses. 

In general, energy equilibrium principle for the acoustic 
weaves in the multi-layered structure can be defined using 
the global matrix G: 

 0=AG ,  (3)  
where the vector A represents the amplitudes of the waves 
displacements and stresses on the boundaries of the 
different layers. In general, the solved values of the vector 
A correspond to some mode m of a propagating Lamb 
wave with the phase velocity cm at the angular frequency 
ω. The dispersion curves can be expressed as the set of the 
curves cm=f(ω), where m=1÷M and M is the number of 
wave modes under analysis. So, for the dispersion curves 
determination it is necessary to determine velocities of 
different Lamb waves in the frequency range (ωmin, ωmax). 
The valid modal solution of Eq.3 at fixed angular 
frequency occurs when complex determinant  

 0det =G .  (4) 
This solution gives the value of the corresponding Lamb 
wave mode velocity cm. The problem is that for one fixed 
frequency point fi, there may be a number of roots c1, c2,…, 
cm, corresponding to different modes and for determination 
of each of them it is necessary to solve this nonlinear 
matrix equation. This usually takes a long time. In the next 
paragraph the relatively fast and reliable dispersion curves 
calculation algorithm is presented. 

Dispersion curves calculation algorithm 
There are two main factors, which can reduce the 

calculation time: the first is the effectiveness of root 
calculation method and the second is the reduction of the 
points where the solution of matrix equation is performed. 
Dealing with the first factor, Lowe gives overview of 
different methods such as bisection, Newton-Raphson, 
Monte Carlo and etc. used by other researchers [1]. The 
secant method is chosen in this work because it does not 
need the analytical expression of function derivatives and 
has convergence similar to the Newton-Raphson method, 
based on analytic function derivatives.  

The big number of points where it is necessary to find 
the test solution is caused by the fact that at each fixed 

frequency exist many modes of propagating Lamb waves 
and as consequence the big number of roots. For the 
reliable detection of each of them the search intervals must 
be relatively small and this leads to the big number of 
calculation points. For reduction of number of these points 
the dispersion curves calculations algorithm was divided 
into two stages. The objective of the first stage is to find 
one, new (not calculated) dispersion curve at the fixed 
velocity. The objective of the second stage is to follow 
along the detected dispersion curve and in such a way to 
calculate the phase velocity values of the detected mode in 
the interested range of frequencies. 

During the first stage the some initial value of the 
Lamb wave velocity c0m is selected and the step by step 
searching for the root of Eq.4 in the frequency range under 
the interest (ωmin, ωmax) is performed. Such a scanning is 
performed until the first root is found, that is, the 
frequency ω0m at which the detected mode m have velocity 
c0m.. This means that one point (c0m, ω0m) of the dispersion 
curve is known.  

In the second stage the tracing along the detected curve 
should be performed. In the initial part of this stage the 
additional four points of the curve are calculated using 
small step in frequency domain, that is (c0m, ω0m), (c1m, 
ω0m+dω), (c2m, ω0m+2 dω), (c3m, ω0m+3 dω), (c4m, ω0m+4 
dω). The selection of small step enables to reach required 
accuracy very fast, but application of such an approach for 
tracing of the complete curve will require a big number of 
steps. Because of that, in next steps the fourth order 
extrapolation is used for setting of the search interval for a 
new point using essentially bigger step ∆ω in the 
frequency domain.  

So, the dispersion curves calculation algorithm 
consists of the next general steps: 

I. Construction of multi-layered structures using global 
matrix approach and corresponding properties of each 
layer. Also, ranges of frequency and Lamb waves phase 
velocities ranges are selected. 

II. Searching for the first point of a new dispersion curve: 

1. Select initial velocity value c0; 
2. Select initial angular frequency value ω0; 
3. Set  the root search interval in the frequency domain 

(ω0-∆ωr, ω0+∆ωr); 
4. Solve the matrix Eq.4 by secant method. Result is 

the frequency of the Lamb wave with the velocity 
c0.; 
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5. If the root does not exist, increase the frequency 
value ω0 and repeat steps the 3-5 again till the root 
will be found; 

6. The calculated point is selected as the initial point 
(c0m, ω0m) for the dispersion curve tracing; 

III. Tracing of the dispersion curve: 
1. Calculate Lamb wave velocities at the frequencies 

ω0m+dω,  ω0m+2dω ,   ω0m+3dω,   ω0m+4dω ; 
2. Calculate extrapolation coefficients of the fourth 

order polynomial using the last 5 points of the 
dispersion curve; 

3. Calculate approximate Lamb wave velocity '
newc  at 

the frequency, ω0m+∆ωbig 
4. Set the root search interval in the velocities domain 

( rcc ∆−'
new , rcc ∆+'

new ); 
5. Solve the matrix Eq.4 by secant method. The result 

is the Lamb wave velocity cnew at the frequency 
ω0m+∆ωbig ; 

6. Repeat the steps 2-5 until the frequency range limit 
will be reached; 

IV. Store the calculated dispersion curve data; 
Repeat steps II-IV for calculation of other dispersion 
curves. 

Modeling results 
The two types of layered structures were selected for 

analysis. The first structure consists of two layers bonded 
together. The first layer is made of steel and the second 
one of aluminum. Another structure under analysis was the 
five layer composite: three layers of aluminum and two 
layers of glass-fiber with bonding material between 
aluminum plates. Materials properties are presented in 
Table 1. It was assumed that all materials including glass-
fiber with bonding material were isotropic. In all cases was 
assumed that the structure is placed in vacuum. Modeling 
results are presented in Fig.1 and Fig.2. 
Table 1. Material properties. 

Structure Material d, mm ρ, 
kg/m3 

cl, 
km/s 

cs, 
km/s 

Al 0.4 2700 6.32 3.13 Al - steel 
steel 1.2 7800 5.9 3.19 
Al 0.3 2770 6.32 3.15 composite 

bonding 0.25 2500 3.15 1.72 
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Fig. 1. Lamb waves pahase velocity dispersion curves in aluminum-

steel structure. 
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Fig. 2. Lamb waves pahase velocity dispersion curves in composite. 

It can be seen the complicated dependencies of 
velocities, especially for case of the five layer composite 
structure. 

Conclusions 
The Lamb waves modeling methods were reviewed and 

the global matrix method was selected for calculation of 
Lamb waves dispersion curves in multi-layered plate-like 
structures. The robust and simple calculation algorithm of 
dispersion curves based on the global matrix method has 
been developed. 
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A. Demčenko, L. Mažeika 

Lembo bangų daugiasluoksnėse plokščiose struktūrose dispersinių 
kreivių apskaičiavimas 

Referatas 

Darbe apžvelgti Lembo bangų modeliavimo metodai. Atlikta 
globaliosios matricos metodo izotropinių medžiagų atveju analizė, 
pateiktos sluoksnius aprašančių matricų koeficientų analitinės išraiškos. 
Pasiūlytas algoritmas Lembo bangų dispersinėms kreivėms apskaičiuoti, 
pagrįstas globaliosios matricos metodu, ir išnagrinėti pagrindiniai šio 
algoritmo realizavimo etapai. Pateikti dispersinių kreivių 
daugiasluoksnėse lakštinėse struktūrose apskaičiavimo pavyzdžiai. 
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