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Introduction 

Self-propelled vehicles, tractors and other prime 
movers, engines of which radiate most of all low-
frequency noise, that are used for road and earthwork are 
the polluters of the ambient environment. Low-frequency 
noise is insulated with difficulty by means of traditional 
constructions; they penetrate through them and propagate 
far away from the noise source. 

Certain requirements are set for the hoods of these 
vehicles. One of these is the effect on the distribution of 
temperatures under the hood.  

The construction of the hood, its material and 
thickness have a major effect on normal (permissible) heat 
exchange under the hood (housing). These properties are 
related to sound insulation. Very often for reduction of 
sound permeability sound-absorbing materials and thick-
walled housing of increased weight are used. Hoods of 
these constructions increase sound insulation, but they 
reduce heat permeability. 

Hoods currently applied in the constructions of the 
afore-mentioned vehicles may be divided into rigid and 
soft. Rigid ones in their turn may be of different 
modifications: hermetical, frame-type with ventilation, 
non-dismountable-modular. Soft hoods are frameless, with 
natural ventilation, and dismountable. Hoods of these 
constructions in most cases have the rectangular shape 
with rounded corners. Sound insulation of hoods of such 
type is computed on the basis of the plate insulation theory. 

The paper presents the theory for evaluation of the 
sound insulation of cylindrical hoods. On the basis of 
theoretical, theoretical and laboratory investigations, it is 
shown that sound insulation of cylindrical housings at the 
low- and medium-frequency range is considerably higher 
than that of plates. 

This paper presents the computation methods for 
estimation of sound insulation of cylindrical hoods that 
may be applied in the evaluation of insulation of housings 
when constructing tractors and other self-propelled 
vehicles used in agriculture and earthwork.  

Theory of sound insulation of cylindrical hoods 
(shells) 

In the work [1, 2] an analysis is made of the sound 
insulating properties of infinite cylindrical shells. Results 
of this research may be used only in the case where the 
length of the cylinder is significantly larger than its 
diameter and the effect of the boundary conditions on the 
sound insulation of a shell may be not taken into 
consideration. 

Nevertheless, the above-mentioned condition is not 
always practically fulfilled, and the length of the cylinder 
comes close to its diameter. Therefore it is expedient to 
clarify the field of application and to make a certain 
evaluation of the impact of the boundary conditions on the 
sound insulating properties of such cylindrical shells 
(housings).  

Let’s consider a finite cylindrical shell l pivoted along 
the curvilinear edges. 

Thus the boundary conditions will take the form of  
 T1=M1=w=v,  (1) 

at 0=α  
r
l

=α . 

Equations describing the structure are [3] 
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where  is the load. xp
We shall rewrite equations in the form 
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Solution of the system (2) we will search in the form 
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where 
l
rq

q
πλ = . 

Inserting Eq.4 into the system of Eq.2, we will get 
(solution is effected by a method [4]:  
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However, the result of system solution (5) in view of 
its complexity is not subject to a simple analysis and, 
consequently, is of no practical value. Therefore we shall 
solve a problem in the first approximation, i.e. consider 
that displacement of the wall of the shell at a sufficiently 
narrow frequency band shall be determined by a 
displacement at the allowed frequency, included into that 
band. We will neglect the impact of the remaining allowed 
frequencies. 

Taking into account this circumstance as well as 
requiring orthogonality of the system (5) and function qΦ , 
we will get  
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Let’s exclude from Eq.7 and then divide the 

obtained equation into 
qC1

qCi 2ω , then we will get 
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The left part of the Eq. 8 is the impedance of the 
cylinder:  
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After some transformations Eq. 9 may be written as 
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The main difference of the impedance of an infinite 
cylindrical shell from the impedance of the finite shell is 
the presence in the latter of the additional multipliers 
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expression for determining of the additional boundary 
frequency . 1

oω
It is interesting to note that difference in the sound 

insulating properties of finite and infinite cylindrical shells 
disappears when the length of the cylinder is equal to the 
length of its semicircle, i.e. . rl π=

To obtain the quantitative dependence for determining 
the value of sound insulation of the finite cylindrical shell, 
at first we will find the coefficient of acoustic permeability 
at statistical distribution of angles of incidence of sound 
waves, i.e.  

 
 

 42



ISSN 1392-2114 ULTRAGARSAS, Nr.4(53). 2004. 

( )

∫ ∫

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=

1 /

0

22
222

2

22
4

212
22

2

22
4

2

2

2

22
22

2

22
4

12
22

2

22
4

2

2

2
.

cossin/sincossinsin1
2
cos

sin

cossin/sincossinsin
2
cos1

)(sin2

o

rx

o

o

l
r

l
r

pc
m

dd

l
r

l
r

c
m

dd

θθπθ
ω
ωθθπϑ

ω
ωϑω

θϑ

θθπθ
ω
ωθθπϑ

ω
ωη

ρ
ϑω

θϑ
π

τ  

         (11) 
 
No possibility exists for calculation of expression (11) 

in the closed form. However, the possibility exists to 
simplify this expression being guided by the following. 

With the increase of the length of the cylinder, starting 

with the length rl π= , the expression 
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when it is included in the composition of a member, taking 
account of the effect of the rigidity of tension.  

Then the expression (11) may be written thus: 
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Let’s calculate the expression (12) by the method laid 

out in [2], considering 
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where ; . otgtg θθ 33 ≅ oθθ 22 coscos ≅

We calculate the integral  
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Integration of Eq.15 at an angle ϑ  gives 
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Expression (16) may be written as follows 
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Consequently, sound insulation of the infinite 

cylindrical shell is determined by the expression 
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The satisfactory coincidence of the results, obtained 
according to the formula (18), with the results of numerical 
integration of the expression (12) with a special 
programme on a computer may be stated only at the 
frequencies  (Fig.1). In the remaining area of 
frequencies, the coincidence of results is unsatisfactory. 
This circumstance may be explained as follows.  

1
oωω <

The accepted method of calculation of the integral (12) 
satisfies the required precision only in the case of the 
coefficient of sound permeability being calculated 
according to the area, bounded by the curve of wave 
coincidence, approximate by its character to  – function. 
This condition is sufficiently precisely maintained for 
frequencies . Beyond these frequencies, the form 
of the curve of wave coincidence gets “spread” and now it 
is not allowed to neglect the areas lying outside the 
boundaries 

δ

1
oωω <

ε± . Therefore, the sound insulation, calculated 
according to the formula (18), is augmenting with the 
increase of the frequency for . 1

oωω >
However, one more method for calculation of similar 

integrals exists, which is less “sensitive” to the mentioned 
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shortcoming. For that purpose, making use of the known 
ratio [4] and considering ϑ  = 45о, the coefficient of sound 
permeability at statistical distribution of angles of 
incidence of sound waves we will write thus 
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The coefficient of sound permeability may be written 
as 
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Expression for determining the value of sound 
insulation will be defined by the expression  
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Eq. 22 is obtained without taking into account of the 
effect of losses on the sound insulation of the cylindrical 
shell. However, analysis of the results of numerical 
integration shows that this effect is substantial at high 
frequencies and it may be taken into account by increasing 
the design quantity of sound insulation according to the 
Eq. 22 by 2–9 dB. 

Thus the Eq. 22 may be written as follows 
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The results, presented in Fig. 1, show that Eq. 23 
describes satisfactory the change in the sound insulation of 
the shell at frequencies . 1

oωω >
Thus, for calculating the sound insulation of the finite 

shell, pivoted along the curvilinear edges, it is possible to 
use Eq. 18 for frequencies  and Eq. 23 for 

frequencies . 

1
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1
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Conclusions 
The obtained theoretical results make it possible to 

draw a conclusion on the sound insulation of the housing 
(shell). The calculated sound insulation of the housing 
(shell) is reflected in Fig.1. It is seen here that sound 
insulation of such housing at low frequencies is higher than 
that of plate and increases insignificantly with a frequency. 
Sound insulation up to the ωo additional reducing 
frequency is less than in plates, since the rigidity stretching 
member at frequencies ω <ωo may become equal to the 

inertia member due to the certain incidence angle of a 
sound wave, which is characteristic of each frequency.  

 

 

Fig. 1. Sound insulation: plate (1) and cylindrical shell (2): n = 2 mm. 
2r = 600 mm; l = 1000 mm 

Notation 
T1 – normal forces; 
M1 – bending moment; 
w – normal displacement; 
v – tangential displacement; 

r
l

=α  

ω  – boundary frequency; 
0ω  – additional boundary frequency; 

W  – amplitude of oscillations; 

Θϑ
ω sinsinr
c

q = ; 

E  – Young’s modulus; 

Θϑ
ω cossinr
c

n = ; 

p – sound pressure; 
hm mρ=  – unit mass of the material surface; 

h  – shell wall thickness; 
Θ  – angle between the plane of incidence and the axis 

plane; 
ϑ  – angle between normal; 

cρ  – specific acoustic resistance of medium; 
τ  – coefficient of sound permeability; 
R  – sound insulation of a barrier. 
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D. Gužas, J. Petraitis, R. Butkus, J. Deikus, A. Šarlauskas 

Kelių ir žemės darbams naudojamų savieigių mašinų kapotų garso 
izoliacijos ypatumai 

Reziumė 

Straipsnyje pateikiama teorija, kaip nustatyti cilindrinių kapotų 
(kevalų) garso izoliacijos ypatumus, priklausančius nuo kapotų formos. 

Mūsų ir kitų autorių [1, 2] atliktais tyrimais nustatyta, kad cilindrinių 
gaubtų (kevalų) garso izoliacija žemų ir vidutinių dažnių diapazone yra 
daug aukštesnė negu plokščių paviršių. 

Čia pateikiama skaičiavimo metodika cilindrinių kapotų (kevalų) 
garso izoliacijai įvertinti. Gauti rezultatai gali būti taikomi traktorių ir kitų 
žemės ūkyje naudojamų savieigių mašinų kapotų izoliacijai įvertinti. 
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