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Introduction 

The problem of fluid oscillations is common in 
different engineering applications. Shadow moire is one of 
the popular methods for experimental analysis of 
vibrations of the surface of the fluid [1, 2].  

There exists a definite need for hybrid numerical – 
experimental techniques [3, 4] that could help to interpret 
the measurement results. Such techniques usually comprise 
a numerical model of the system coupled with optical and 
geometrical parameters of the measurement set-up. Then 
the predicted response of an experimental optical 
measurement system can be mimicked in a virtual 
numerical environment when the dynamical parameters of 
the analysed object are pre-defined.  

Visualisation techniques of the results from finite 
element analysis procedures are important due to several 
reasons. First is the meaningful and accurate representation 
of processes taking place in the analysed structures. 
Second, and perhaps even more important, is building the 
ground for hybrid numerical - experimental techniques. A 
typical example of FEM application in developing a hybrid 
technique is presented in [3].  

Shadow moiré analysis 
The principle of the shadow moire analysis [1, 2] is 

shown in Fig. 1. x, y and z are the orthogonal Cartesian 
axes of coordinates (y axis is not shown in the figure for 
the sake of simplicity). The surface of the fluid in the 
status of equilibrium is in the plane z = −d, here d is the 
distance between the moire grating and the surface of the 
fluid in the status of equilibrium. Moire grating is in the 
plane z = 0 and the photographic plate is parallel to this 
plane. The deflection of the surface of the fluid is w. α is 
the angle between the z axis and the direction of the 
parallel incident rays of light, u is the shift of the shadow 
moiré grating in the direction of the x axis with respect to 
the initial moiré grating. H is the thickness of the layer of 
the fluid in the status of equilibrium.  

The dynamic response of the surface of the fluid is 
directly related to its eigenmodes. Therefore analysis of 
natural vibrations taking place according to the eigenmode 
of the surface of the fluid is important in a number of 
engineering applications.   

The developed technique for construction of shadow 
moiré images of the eigenvibrations of the surface of the 
fluid is applicable in a hybrid numerical - experimental 
shadow moire analysis using the stroboscopic method. 

 

 
 
Fig.1. The schematic of vibration analysis of the surface of the fluid 

by shadow moiré. 

 
The vibrations of the fluid are described by the 

following equation [5, 6, 7]: 
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where g is the acceleration of gravity of the earth.  
First of all the eigenmodes of the surface of the fluid 

are calculated. The finite element has one nodal degree of 
freedom (the displacement w). It is assumed that the 
surface of the fluid performs vibrations according to the 
eigenmode (the frequency of excitation is about equal to 
the eigenfrequency of the corresponding eigenmode and 
the eigenmodes are not multiple). The vibrations of the 
surface of the fluid are registered stroboscopically when 
the fluid is in the state of extreme deflections according to 
the eigenmode.  

Then the moiré images are produced [1, 2] assuming 
that the shadow displacement in the direction of the x axis 
u takes the following value: 

 ( ) αtanwdu −= .  (2) 

For the more general case it is assumed that the grating 
makes an angle β with the x axis. The parallel rays of light 
turn together with the grating. Then the intensity of the 
moiré image takes the form: 
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where λ is the constant describing the distance between the 
lines of the grating. 

The stiffness matrix of the element describing the 
vibrations of the surface of the fluid has the form: 

 [ ] [ ] [ ]dxdyBHgBK T∫∫= ,  (4) 

where 
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and Ni is the i-th shape function of the finite element. 
The mass matrix has the following form: 

 [ ] [ ] [ ]∫∫= dxdyNNM T , (6) 

where: 
 [ ] [ ]...1NN = . (7) 

Eq. 1 is based on the equations of motion in the 
directions of the x and y axes: 
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where ρ is the density of the fluid, uf and vf are the 
velocities of the fluid in the directions of the x and y axes, 
p is the pressure. It is also based on the equation of static 
equilibrium in the direction of the z axis:  

 ,gwp ρ=   (9) 

and on the equation of continuity for the incompressible 
fluid with the free surface: 
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On the basis of Eq. 8 and 9: 
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thus the accelerations in the directions of the x and y axes 
are proportional to the derivatives of w with respect to x 
and y. For a harmonic motion according to the eigenmode 
the displacements are proportional to the accelerations. So 

x
w
∂
∂  and 

y
w
∂
∂  fully describe the plane motion of the fluid. 

In order to obtain the nodal values of 
x
w
∂
∂  and 

y
w
∂
∂  the 

procedure of conjugate approximation [8] is used. The 

values of 
x
w
∂
∂  and 

y
w
∂
∂  at the points of numerical 

integration of the finite elements are obtained as: 
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where {δ} stands for the vector of nodal values of w for 

the analysed finite element. Then the nodal values of 
x
w
∂
∂  

and 
y
w
∂
∂  are obtained by solving the following systems of 

linear algebraic equations: 
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where the summation sign stands for the direct stiffness 
procedure, the vector columns {δx} and {δy} are the nodal 

values of 
x
w
∂
∂  and 

y
w
∂
∂  respectively of the global system. 

The relationships presented above form the basis for 
generation of the shadow moiré images of the surface of 
the fluid and the analysis described below.  

Results of analysis by shadow moiré 
A circular channel of constant thickness is analysed. 

Such configurations of fluid channels are common in 
lithographic printing devices. The perspective projection 
of the finite element mesh for the tenth eigenmode is 
shown in Fig. 2. The mesh in the status of equilibrium is 
grey and deflected in the direction of the z axis according 
to the eigenmode is black. 

 

 
Fig.2. The perspective projection of the tenth eigenmode of the 

surface of the fluid (the mesh in the status of equilibrium is 
grey and deflected in the direction of the z axis according to the 
eigenmode is black). 

Isolines of the displacement of the surface of the fluid 
in the direction of the z axis for the tenth eigenmode are 
shown in Fig. 3. 
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Fig.3. Isolines of the displacement of the surface of the fluid in the 
direction of the z axis for the tenth eigenmode. 

The stroboscopic shadow moire image of the surface 
of the fluid in the status of equilibrium is shown in Fig. 4. 
No fringes are observed in this case and such an image can 
be used for the initial calibration of the experimental set-
up.  

 

Fig.4. The stroboscopic shadow moire image of the surface of the fluid 
in the status of equilibrium.  

The stroboscopic shadow moire image of the tenth 
eigenmode is shown in Fig. 5. The correspondence of the 
character of shadow moiré fringes with the drawing of the 
isolines described previously is evident.  

On the basis of the calculated eigenmodes the nodal 

values of 
x
w
∂
∂  and 

y
w
∂
∂  are obtained by using the conjugate 

approximation.  As  mentioned  previously  the  quantities 

 
 

a) 

 

b) 

Fig.5. The stroboscopic shadow moire image of the tenth eigenmode 
of the surface of the fluid: a – general view; b – zoomed area of 
the region of maximum deflections.  

x
w
∂
∂  and 

y
w
∂
∂  describe the plane motion of the fluid. The 

finite element mesh for the plane motion for the tenth 
eigenmode is shown in Fig. 6. The mesh in the status of 
equilibrium is grey and deflected according to the plane 
motion is black. 

One is to have in mind that the latter result is obtained 
only from the numerical calculations: thus the concept of 
hybrid experimental – numerical analysis becomes 
especially important. In the first stage of the analysis the 
correspondence of the transverse motions of the fluid 
obtained from the experimental shadow moiré analysis and 
by the numerical calculations is determined. If the 
correlation of those results is acceptable then the plane 
motion of the fluid is obtained on the basis of numerical 
calculations as the second stage of the analysis. 
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Fig.6. The finite element mesh for the plane motion for the tenth 
eigenmode (the mesh in the status of equilibrium is grey and 
deflected according to the plane motion is black). 

Conclusions 
The construction of shadow moire images builds the 

ground for hybrid numerical-experimental procedures for 
effective solution of problems of the analysis of vibrations 
of the surface of the fluid. The stroboscopic shadow moiré 
images of the eigenmodes of the surface of the fluid are 
obtained.  

The plane motion of the fluid is obtained only from 
the numerical calculations: thus the concept of hybrid 
experimental – numerical analysis consists of two stages. 
In the first stage the correspondence of the transverse 
motions of the fluid obtained from the experimental 
shadow moiré analysis and by the numerical calculations is 
determined. If the correlation of those results is acceptable 

then the plane motion of the fluid is obtained on the basis 
of numerical calculations as the second stage of the 
analysis. 
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M. Ragulskis, R. Šatkauskas, K. Ragulskis, R. Maskeliūnas 

Skysčio paviršiaus svyravimų analizė šešėlinio muaro metodu 

Reziumė 

Skysčio paviršiaus svyravimams pagal savąją formą tirti taikomas 
stroboskopinis šešėlinio muaro metodas. Kaip baigtinių elementų 
skaičiavimų rezultatas gauti vaizdai naudojami eksperimentinėse 
hibridinėse skaitmeninėse procedūrose. 

Skysčio judesys plokštumoje gaunamas tik kaip skaičiavimų 
rezultatas: taigi pirmajame analizės etape nustatomas eksperimentinio 
vaizdo ir skaičiavimų, gautų tiriant skersinius skysčio paviršiaus judesius, 
atitikimas, o antrajame etape skaitmeniu būdu gaunamas skysčio judesys 
plokštumoje.  
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