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Introduction 

The propagation of sound waves in cylindrical tubes 
with compressible fluid is a fundamental and classical 
problem. Famous names - Helmholtz, Kirchhoff, Rayleigh 
- are connected with the first studies [1]. The full Kirchhoff 
solution of a viscous and heat-conducting fluid in rigid 
circular tubes was later developed in two directions: 
analytical approximations of a very complicated 
transcendental equations for various regions of “wide”, 
“narrow”, “wide-narrow”, “very wide” tubes and an 
extension of the theory for non-circular tubes or higher 
modes in circular tubes [1, 2]. Rodarte et al. [3] presents a 
polynomial approximation of Kirchhoff solution and 
includes some experimental investigations. Simplifications 
of the initial equations, describing a viscous and thermal 
gas, were made by Cummings [4]. In this paper an 
approximate solution for circular tubes was investigated 
and generalized for the tubes of arbitrary cross-sectional 
shape. 

Another development of investigations considered 
deformations of the pipe. Interaction of the compressible 
ideal fluid and elastic shell is the principle aim of these 
investigations. One of the first studies of the axisymmetric 
waves was published by Lin and Morgan [5], where the so-
called cut-off frequency is studied. More complicated 
cases of the modal shapes of a shell and corresponding 
dispersion equations with complex wave numbers were 
investigated by Fuller and Fahy [6]. Acoustic energy flow 
in deformable pipes was investigated by Pavic [7] and 
Feng [8]. Bansevicius and Kargaudas [9, 10] presented the 
results of new studies involving multichannel deformable 
pipes. In all those investigations the fluids are considered 
as ideal and the thermal conductivity in fluid is neglected. 
Sound transmission through the deformable ducts and 
wave attenuation is described by Cummings [11, 12], but, 
here, transmission loss in these papers is attributed to an 
external acoustic radiation from the duct walls with 
rectangular, circular or flat-oval cross-section shapes. 

Propagation of elastic waves in a fluid-saturated 
porous solids and an interaction between the solid and the 
fluid was studied by Biot [13].  

As the Kirchhoff solution for a rigid circular pipe is 
highly complicated, simplifications of fluid equations are 
practically inevitable. Simplifications, used in this paper, 
coincide with the simplifications made by Stinson [14] and 
applicable to the broad range of frequencies f and radii ro 

encompassed by  623
0 10<fr cm s-3/2  and 0r  > 10-3 cm, 

but the assumption “the amplitude of the acoustic pressure 
p is constant in the cross-section of a pipe” has to be 
restricted. The assumption p is constant in this paper is 
applied only for the longitudinal fluid motion equation and 
the thermal equation. The exact Kirchhoff solution proves 
pressure p is not a constant, so the problem is: where can p 
be assumed a constant and where the variation of the 
pressure p is essential? The Stinson’s investigation in [14], 
based on comparison between the Kirchhoff exact solution 
and the approximate solution of the longitudinal motion 
equation where the pressure p is constant , shows that this 
assumption is acceptable for this equation. However, if 
elasticity of the pipe is to be considered, assumption that p 
is constant is completely unacceptable, because the 
pressure variation in the cross-section is the reason or, in 
some cases, the consequence of the fluid motion in this 
section. If equations, describing the fluid motion in the 
cross-section, have to be solved, then the problem is the 
way of approximate presentation of a pressure. 

In the deformable pipes with viscous and thermal 
fluid, the attenuation of the propagating pressure waves 
depend on the viscosity, the thermal conductivity of the 
fluid and also on damping in the shell material. So, the 
whole problem of wave attenuation in the pipe can not be 
solved unless the thermal and viscous fluid equations are 
solved simultaneously with the shell equations. Influence 
of the fluid surrounding the tube and the external acoustic 
radiation from the tube is neglected in this paper, but there 
are no principal obstacles to include this factor [11, 12]. 

The Kirchhoff solution and the Stinson’s 
approximation are for the viscous and thermal fluid in a 
rigid tube. The approximate solution, presented in the third 
section of this paper, is also for the viscous and thermal 
fluid in a rigid tube, however the method of solution differs 
from Stinson’s approximation: the equation of fluid motion 
in the cross-section is applied. The approximate solution, 
obtained in this paper, after some elementary 
simplifications, is identical with Stinson’s approximation. 
But this approximation is insufficient if dynamics of the 
pipe or shell are important. More accurate approximation, 
presented in the fourth section of this paper for both the 
rigid and the elastic tubes, includes also the true value of 
the fluid added mass, i.e. the influence of the fluid 
dynamics in the cross-section of the pipe. If the viscosity 
and thermal conductivity in the second approximation 
approaches zero then a limit of the solution for the ideal 
fluid and the elastic tube is obtained [9]. The values of 
added mass coincide in both solutions. The added mass of 
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the first approximation in this paper and in Stinson’s 
approximation is negative, therefore is inconsistent with 
the true value. 

Fluid equations 

A viscous and heat-conducting fluid in the cylindrical 
shell of arbitrary cross-section is investigated. If fluid 
velocity V is small, then the linearized Navier-Stokes 
equation is 

 VV
V

graddivgradP
t 3

0
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∂
∂

,  (1) 

where 0ρ  is undisturbed fluid density, P - fluid pressure, 

0µ  - absolute fluid viscosity. The mass continuity equation 

and the equation of state for the ideal gas are 
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where vρ  and T are the acoustical density and 

temperature, T0 and P0 are the equilibrium density and the 
equilibrium pressure respectively. Equation, describing 
thermal conduction in the fluid is 
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where κ  is the thermal conductivity, S – entropy. Equation 
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concludes the complete system of equations. The ratio of 
specific heats VP CC=γ  is one of the fundamental non-

dimensional constants of the solution. 
If the wave propagation is considered to be adiabatic, 

then S is constant and from Eq. 5 
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where 0c  is the adiabatic undisturbed velocity of sound. In 

this case Eq. 3 gives distribution of temperature T in the 
wave. If entropy S is not constant, the distribution of 
temperature is to be calculated from the boundary value 
problem. 

Stinson [14] discussed sound propagation in both 
narrow and wide tubes and derived approximation from the 
exact Kirchhoff solution for rigid circular tubes. In his 
generalization for tubes of arbitrary cross-section shape 
Stinson offered three simplifications of the solution: 1) the 
sound pressure p can be assumed as being constant in the 
cross-section of the tube, 2) the excess density ρ  and 

sound pressure p are of comparable magnitude 

00 Pp≈ρρ , 3) the second axial derivative of the axial 

velocity and temperature is negligible. 
Eq. 1 can be presented as 

 







−=

∂
∂

−∆ V
V

V divPgrad
t 3

0
00

µ
ρµ , 

and then with respect to Eq. 2 and the second Stinson 
assumption it can be proved that  Pdiv <<V0µ . 

The complex quantities p, ρ , ρ  and v can be 

introduced through 
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where p, ρ , ρ  and v are the functions of the cross-section 

coordinates only, the z axis coincides with the direction of 
wave propagation (Fig. 1), ω - frequency, k – wave 
number. Now, Eq. 1 gives 
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ik

viv zzc
0ρ

ων −=∆   (7) 

and 

 










∂
∂

+=∆

∂
∂

+=∆

y

p
viv

x

p
viv

yyc

xxc

0

0

1

1

ρ
ων

ρ
ων

  (8) 

where 
2
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∂
=∆  is Laplace operator in cross-

section plane (Stinson assumption 3), 00 ρµν = . 
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Fig. 1. A cylindrical tube of arbitrary cross-sectional shape 

 
The first Stinson’s assumption that p is a constant in 

the cross-section can be applied for the longitudinal motion 
and the longitudinal heat propagation, but not for the fluid 
motion in the cross-section of the tube. The pressure 
derivatives in Eq.8 can be small, but the values of xvωρ0 , 

yvωρ0  are small too and, thus, can not be ignored. 

If tv ∂∂ρ from Eq. 3 is substituted into Eq. 5, then 

equation 
 piCi Pc ωτωρτκ −=∆ 0   (9) 

can be deduced from Eqs. 4, 5 and 6. If 0pp =  is assumed 

the constant in Eqs. 7 and 9, then two boundary value 
problems for ( )yxvv zz ,=  and ( )yx,ττ =  can be solved 

with 0=τ  and 0zz vv =  on the boundary. The tube 

velocity 00 =zv  if tube longitudinal displacements are 

neglected. 
If tv ∂∂ρ  from Eq. 3 is substituted into Eq. 2 and 

Eq.6 are used then 
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There are two equations in system (8), and Eq. 10 with 
unknown functions ( )yxvv xx ,= , ( )yxvv yy ,= , 

( )yxpp ,= . If terms xcv∆ν , ycv∆ν  are ignored in Eq. 8, 

then the values of xv , yv  from Eq. 8 can be substituted to 

Eq. 10. The non-homogenous Helmholtz equation for one 
unknown function ( )yxp ,  is obtained, but the boundary 

conditions require xv , yv  functions to be solved. If p is 

substituted from Eq. 10 to Eq. 8 a system of two partial 
derivative equations is deduced. Solution of these 
equations depends on boundary conditions, and boundary 
conditions depend on the solution of the shell dynamic 
equations. However, general solution of the shell with 
arbitrary cross-section is complicated, and only numerical 
analysis can be suggested in the present state of 
investigation.  

Waves in rigid circular tube 

In the case of a circular tube of radius 0r  Eq. 7 and 

Eq. 9 can be given by 
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where the longitudinal velocity magnitude )(ruu =  and 

the excess temperature )(rττ =  are functions of the radial 

distance r only. If 0pp =  is the constant, then solutions, 

satisfying zero boundary conditions at the 0rr = , are 
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where )(0 zJ  is the Bessel function of the zero order, 
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Eq. 8 are replaced by one 
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where ( )rqq =  is the radial velocity of the fluid. The 

equation of continuity (10) is now 
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where relation, valid for ideal gas, ( )000 TPCC VP ρ=−  

is used. The principal equation for the radial velocity is 
obtained, when pressure p from Eq. 14 is substituted into 
Eq. 13  
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where 2
00 cωγνε = , 00 ce ωγ=  and u′ , τ ′  are 

derivatives from Eq. 12. The non-dimensional constant 

122
0 <<Ω= sγε  in most practical cases and can be 

ignored in Eq. 15. Eq. 11 also have small constants ν  and 
κ , but there is a principal difference between Eq. 11 and 
Eq. 15. Perturbation of Eq. 11 by ν  and κ  is singular, 
while perturbation of Eq. 15 is not singular. If constants ν , 
κ  are assumed equal to zero in Eq. 11, then the degrees of 
the differential equations are reduced and the solutions lose 
possibilities to satisfy all boundary conditions. Assuming 
that 00 =ε , the degree of the differential Eq. 15 remains 

the same. For the same reason, solving the system of Eqs. 
8, 10, it can be assumed that 0=ν  in Eq. 8, but that is 
unacceptable in Eq. 7. 

A general solution of non-homogenous Eq. 15 when 
00 =ε  is  
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The limit ( ) ∞→
→

reY
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lim , so B = 0. The constant A is 

determined by the second boundary condition ( ) 00 =rq , 

so the solution of Eq. 15, satisfying both boundary 
conditions, is 
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The solution (18) has to satisfy Eq. 14. There are 
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2
000 rqcpi ′−= ρωγ . 
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where ( ) ( ) ( )zJzJzG 01= . This equation can be 

considered a dispersion equation. The product 

Ω== γωγ 0000 crre  , where the reduced frequency 

00 crω=Ω  is usually a small number. If 2Ω  can be 

ignored with respect to 1, then ( ) 20000 rereG ≈  and all 
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This approximation exactly coincides with Stinson’s 
approximation (43) in [14]. The ways of deduction of Eq. 
20 by Stinson and in his paper are different. According to 
Stinson’s procedure the average of the continuity Eq. 10 is 
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where the average of some value ( )yx,ξξ =  is defined as 

 ∫−= dAA ξξ 1 , 

A – the cross-section area. From the flow symmetry 

0== yx vv  follows and the value of pressure 

== 0pp const is used. After integration of Eq.12 the same 

Eq. 20 is found. But this procedure is inapplicable for 

elastic tubes, because 0== yx vv  remains true when 

the deformation of the shell is symmetric. Therefore, the 
dispersion equation remains the same Eq.20 for 
deformable circular tubes – an obviously wrong outcome. 
Why does the average of the continuity Eq. 10 give 
acceptable approximation of dispersion equation only for 
rigid pipes? Can this procedure be improved to be 
acceptable for deformable shells? In any case, constant 
pressure premise for the longitudinal motion and thermal 
equations, but not for the cross-sectional movement 
equation, gives the same approximation as an average 
procedure for rigid pipes and it also enables to apply 
elastic boundary conditions. 

The Bessel functions of solution (12) can be expressed 
by Kelvin functions 
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when 0→ν , 0→κ  can be proved. Thus from Eq. 20 the 

wave number can be deduced for 10 >>rjα : 
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The value Imk describes wave attenuation in the tube 
and this outcome coincides with the formula given by 
Landau in [16, §79]. 

Conclusions 

In this study any fluid (i.e. gas or liquid) is appropriate 
if it is, with some degree of accuracy, represented by the 
linearized motion equation and the equation of state for the 
ideal gas. The area of application of the solutions, 
suggested in this paper, is not less than in Stinson’s 
approximation: to narrow and wide tubes, and to the study 

of the acoustic properties of porous materials. Possibility to 
satisfy not only the rigid, but elastic shell boundary 
condition also, extends the area of application. Propagation 
of the acoustic waves in pipes is a fundamental problem, 
and it can be applied in the field of mechatronics, too. 

The developed equations, presented in this paper, are 
valid for an arbitrary shape of the cross-section, but the 
solution is presented only for a circular cross-section as in 
the Kirchhoff solution. 
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Bangos, sklindančios klampiame ir šilumai laidžiame skystyje 

standžiame apskritame vamzdyje 

Reziumė 

Bangų sklidimą klampiame šilumai laidžiame skystyje Kirchofo 
teorija aprašo tuo atveju, kai skystis yra standžiame apskritame vamzdyje. 
Kirchofo sprendimas labai sudėtingas, todėl yra pasiūlyti įvairūs 
praktiniai artiniai. Šiame straipsnyje panaudoti skysčio judesio lygčių 
suprastinamai jau yra taikyti ankstesniuose tyrimuose, bet viena iš 
principinių prielaidų apie pastovų slėgį vamzdžio skerspjūvyje netinka 
lygčiai, aprašančiai skysčio judėjimą vamzdžio skerspjūvio plokštumoje. 
Gautas standaus apskrito vamzdžio sprendinys, tiriami kai kurie artiniai. 
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