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Introduction

The propagation of sound waves in rigid cylindrical
tubes and viscous, heat conducting fluid is investigated by
Kirchhoff and some other researchers. In [1]
simplifications of the fluid equations and solution for the
rigid tube are presented. The purpose of this study is to
investigate the viscous heat-conducting fluid in deformable
pipes, therefore the interaction of the fluid with the elastic
pipe is a principal problem in this paper: the acoustics
within the tube depend on the vibration of the tube walls,
the vibration of the tube walls depends on the pressure
driving the walls.

Waves in elastic circular tube

When longitudinal bending is neglected, symmetrical
tube deformations can be described by equations [2]
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where z, r are the cylindrical coordinates, &, 7y are
of the tube,
E' = E/(l—,uz), E is Young’s modulus, w is the Poisson

radial and longitudinal displacements

ratio, g is absolute fluid viscosity, # is the tube thickness,

pp 1s the density of the tube, ry - tube radius. If
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frequency, k — wave number, then equations of the tube are
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solution of this system of algebraic equations is
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2 is neglected in the second equation. The
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The approximate value of b, is obtained by applying an
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asymptotic formula as in [1], and «; are determined as in
Eq. 12, [1].

Equations of viscous and heat-conducting fluid for an
elastic tube are the same as for a rigid tube, but boundary
conditions are different. The solution of the longitudinal
fluid velocity Eq. 11 in [1] with condition Eq. 2 is
)= kpo {1_ Jo(alr)}ry ; Jolar) q
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A new, more precise solution can be found if values of

7' and u' in Eq. 15 are substituted from Eq. 12 in [1] and
Eq. 3, where variation of p is taken into account:
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The solution of the differential Eq. 15 in [1] with u’ from
Eq. 4 is very complicated. The exact value of the
derivative Eq. 4 can be replaced by approximate
, kO , K '
w'=—=\p + o h (")
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where ®; is some constant, for example, average over
cross- sectional area: ©, :< fl(r)>. It can be evaluated
from Eq. 3

> v

0, =1-a, = |2,
nvo
The differences between Eq. 4 and Eq.6 are: 1)

replacement of the pressure p = p(r) by py =const and 2)
replacement of the function f;(r) by the constant ©;. The

first approximation of the solution presented in Eqs. 16-20
in [1] can now be obtained by assuming ®; =0 in Eq. 6.

The derivative of the excess temperature
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When Eqs. 6 and 7 are used in Eq. 14 in [1], a new
equation of the radial velocity can be deduced
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The solution of Eq. 8 with g; =0, satisfying boundary
condition Eq. 2, is
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I;(z) is the modified Bessel function.
The dispersion equation may be written in form
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dimensional parameters of a shell f= pocg / E',
Po =mgy/pory — coupling parameter (2], Bg = SBory/h .
For most practical cases only two terms of ¢; /Gl(elro)
series are significant, so
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then G(a jro)zi can be assumed. Neglecting 61205;2
dispersion Eq. 13 can be presented
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The parameter e; depends on the constants ®; and
0, .If ®; =0, =0, then derivative Egs. 6 and 7 give the
first approximation of the solution in which ®3 =y and

e] =iy ®/cy =iep. The solutions (10)-(12) can be
transformed to the solutions (17)-(18) in [1], Eq. 14, the
second term of the series, can be interpreted as added mass
of the fluid [3]. When the value ¢ =iey is used, the
second term of the series eg/ G(eoro) in Eq. 19 [1], gives a
negative fluid added mass. However, this is not true, and
only the first approximation of this expression is valid.

If v>0, x>0, then ©; >1, 0, >1, O3 >1.
When ©; =03 =1, then from Eq.9 612 = k? —a)z/cg =1
[3] When Yl = Y2 =0 15 the
dispersion equation for ideal fluid and elastic shell is
obtained [3, 4]. The fluid added mass is the same in both
cases.

Eq. 15 depends on fluid viscosity, thermal
conductivity and elasticity of the shell. As real values of

(€] are 0<‘®j‘<l,

is substituted in Eq.

fluid viscosity and thermal

J
conductivity have some influence on the added mass (the
term 6‘12 ro2 / 8 in Eq. 15). This may be important for narrow

tubes and low frequencies.
When the Young’s modulus E is replaced by
E(1+i 1///27;), material damping can also be included [5].

The real number y is independent of the frequency o,
but may be dependant on a vibration amplitude.



Solution of the dispersion equation

A very simple approximate formula (21), [1] given by
Landau and more complicated formula (20), [1] given in
Stinson’s investigation [6] are presented for waves in
viscous, heat-conducting fluid and a rigid circular tube.
This formula can also be deduced from Eq. 19, [1] which is
an approximate solution of the differential Eq. 15. Better
approximation for rigid tubes can be obtained if derivatives
(6) and (8) are used in Eq. 15, [1]:
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where e, is given by Eq. 9. These approximations for

attenuation coefficient I'"=Rel’ are shown in Fig.l.
Approximation of the Kirchhoff solution described in [7] is
also plotted. Wave propagation in [7] is expressed by

factor '@ T¢

, where &=wz/cq, therefore TQ = ikry,
'=T'"+i". All approximations are practically identical
when the frequency f <1000 Hz. The Stinson’s
approximation is valid for a tube radius and sound

frequency, given by r0>10'3 cm and ryf 32 4100

32 According to Westons classification [6] this

regime includes both narrow and wide tubes. When ry=1

cm-s

cm the upper frequency is 10 kHz and this correlates well
with Fig.1. When f >10 kHz some difference can be

observed for all approximations, but Landau
approximation is still very near Kirchhoff approximation.
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Fig.1. Dependence of attenuation coefficient I'" on the wave
frequency for air in the rigid circular tube of radius

) =]lem: 1 - Landau approximation [1], 2 - Stinson

approximation [6], 3 — Kirchhoff approximation [7], 4 — the
second approximation Eq. 16

Approximation (15) for an elastic tube has two roots
for every given frequency f =®/27z . One of the roots
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strongly depends on the material damping i . In Fig. 2 this
root is depicted by three approximately horizontal lines.
v =05, ﬁS92 <<1,

w1 =0.15 practically coincide and decrease when

The other three lines for

frequency increases. These lines present attenuation of the
predominantly fluid deflection wave, while the three
horizontal lines present the predominantly pipe deflection
wave. If fluid is absent, then

2
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then
I~i ﬂ—s(l—ﬂij.
0.018
0.014
w=0.5;0.25; 0.15
0.010 | 1
' w=0.5
L - '
0.006 |
\ y=025
\ Y= 0.15‘___,./.
0.002 } S ——— 4
0.000 : : : .
0 4 8 12 16 20
f (kHz)

Fig.2. Dependence of attenuation coefficient I on the wave

frequency for air in the elastic tube of radius 7y = lem, h =

E=32-10°Nfem®, u=0235

material damping |/ . Two different waves can propagate at

0.1cm, and different

the same frequency f: predominant fluid deflection wave (three
lines coincide for different (/) and predominant pipe

(three v=05;
w=025; ¥ =0.15)

deflection wave different lines for

When the fluid is in the tube every longitudinal
deflection of the tube is related to the radial deflection of
the tube and both deflections are related to the deflection
of the fluid. So, the predominantly fluid wave is
supplemented by small tube deflections and the
predominantly tube wave is supplemented by small fluid

deflections. When f ~2.6-10% Hz, both roots of the

equation have peaks of the attenuation (Fig. 3). This crisis
of the wave propagation is connected with the oscillation
amplitudes. The ratio of the tube longitudinal and radial
deflection amplitudes in vacuum
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Fig. 3. Dependence of I"" on high frequencies f for the same tube as

in Fig. 2. Increasing of I"' at some frequency is crisis of the
wave propagation
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Fig. 4. Dependence of ratios &. = |u(0)/q0| , & = |u0 /q0| for the
same elastic tube with air inside as in Fig. 2 and

§W = |u0 / q0| for the elastic tube in vacuum on frequency f
of the waves. Two different waves and different values of &,.,

&, can be evaluated for every f

If the elasticity modulus E is a complex number, then

&,, has its minimal value when szlil—yz '/ﬂg , SO

fe = 2.6-10* Hz. All calculations in Fig. 2 — Fig. 5 are for
the tube with ry=1lcm, h=0.1

E=32-10° N/cm?, the Poisson ratio #=0.35 and air

inside the tube. The ratios of the tube longitudinal
deflection amplitude u and fluid longitudinal deflection

polymer cm,

amplitude u(0) at the tube center r=0 to the radial
deflection amplitude ¢ at the tube and fluid when r = r,

are depicted in Fig. 4 and Fig. 5. These dependences can
be deduced from Eq. 2 and 3 when r=ry and r=0.
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When a frequency is not high and far from critical value
f.=26-10" Hz, then all the ratios £&, = [u(0)/ |-

& =uo /0| For
predominantly fluid deflection wave, the longitudinal
deflection amplitude of the fluid is significantly greater
than the radial deflection amplitude. When frequencies are
high, the dependence of the fluid amplitude in the tube
center » =0 is complicated (Fig. 5). Sufficiently accurate
coincidence &,, = ¢&,, where &, is the predominant tube

decrease = monotonically. the

deflection ratio, can be explained by inequality py<< p;,
for air and polymer.
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Fig. 5. Dependence of ratios £., &, and &, as in Fig. 4 on high
frequencies f of the waves. As in Fig. 4 predominant pipe
deflection ratio &, practically coincides with ratio &, for

the elastic tube in vacuum

The influence of the viscosity, heat conducting and
material damping can be evaluated from Eq. 15. For the

fluid predominant wave and f = 10 Hz, T" =5.75-1072
when all resistances are included, 1"’:1.79-1072 when
fluid viscosity is neglected, I"=3.84-10"> when heat

conducting in the fluid is neglected and I'' = 0.0011-1072
when both viscosity and heat-conducting are neglected.
When the frequency f =1000Hz, the values of T are

0.533-107%, 0.183-107%, 0.350-10% and 0.0011-107
correspondingly. So, viscosity of the fluid is more
significant than heat conducting and the role of material
damping is small for this wave. But for other tubes, the
fluid and frequency influence of these factors can be
different.

The boundary condition for the excess temperature is
assumed 7 =0 when r =ry, but in reality some alteration

of the tube temperature takes place. If heat conductivity is
important, this alteration has to be considered.

The longitudinal bending of the tube is neglected in
this investigation and this is acceptable when the wave
length is not very short. When f = 5-10° Hz, the error of

the wavelength calculation in the tube described above is



~0.01%. But if f =50-10° Hz, longitudinal bending is
important for this tube and can not be ignored. In this case
the term DAAE,, D=E 3 /12 must be included in the
dynamic equation of the tube, and the algebraic dispersion
equation has a higher degree of kry =—-I'Q), but there are
no additional principal problems.

Dispersion Eq. 15 is deduced from Eq. 13 and only
two first terms of the Bessel functions series of arguments
ey are considered. This restriction has its own limits of
application, too. So, the general dispersion Eq. 13 with the
Bessel functions in it can be applied for any tube radius r,

and frequency f if ry > 1073 cm and nnf 32 <10%cm s
(regime of both narrow and wide tubes [6]). But the
simplified dispersion Eq. 15 is deduced by imposing
additional conditions, some of which can be satisfied if
wavelength is many times larger than tube radius ry.
Furthermore, the commonly accepted assumptions on the
cylindrical shell dynamic Eq. 1 are considered [2].
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Fig. 6. Dependence of the fluid pressure function ( p(r)/ p(O))—l on

the radial distance r/ 1y when frequency f =10000 Hz and

other data as in the Fig. 2. Continuous line for the rigid tube
and the elastic tube, when the material damping ¥ =0;

dotted line for y = 0.5

When the dispersion equation is solved the pressure
dependence on radial distance p = p(r) can be obtained

from Eq. 14 [1]. The values of u = u(r), T= r(r) and
¢ = q(r) have to be used from [1] or Eq. 10, thereby
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If

e%/aﬂ<<l the two terms EHjHj(r) in Eq. 17
can be neglected. Solution for the rigid tube can be
deduced if the limit R(a;)—) o is inserted.

If the frequency f =10000 Hz, ry =1cm and all other
data for the polymer tube with air inside are the same, then

‘612 / 0:]2-‘ <<107", but ey can not be assumed small. The

value of e;ry depends on the constants ® jo j=1, 2. If
0 =0, =0, then ejry=¢yryi=2.19;. If B, =0, =1,
then ey =0.0485+0.1172i . For the averaged values
®; =<f;(r)> ery=0.1066+0.1068i , so in this case

Reejry = Im ery. The function Fc(r) and the pressure
p(r) also depend on © ;. When average values of © ; are

applied, the pressure function p(r)/ p(O) is almost the

same for the rigid and the deformable pipe (Fig. 6), but
these functions are different when ©® j =1 or ® j =0,

j=1, 2. It can be seen from Fig. 6 that the pressure

function p(r)/ p(O) depends considerably on the tube
material damping w . If ‘elzroz‘<<1 dependence of the

pressure on r is parabola. Note that the first

approximation can not be applied if the value of ey,

approaches 2.405, because the function
Jo(2.405)=1((2.405))=0 and F.(r)> . On the

whole, may be that any values of the constants ®@;, ©,

are inappropriate if high approximation for the p(r) is

required and therefore next, the third, approximation of the
solution has to be investigated.

Conclusions

Averaged values over the cross-section of the tube are
applied to deduce Stinson approximation of the wave
propagation in viscous and heat conducting fluid [6]. This
is acceptable for a rigid tube and can not be implemented
when elasticity of a tube is taken into account.
Examination of the fluid radial motion equation in non-
dimensional variables discloses why wave pressure can’t
be assumed constant in the tube cross-section in this
equation, but it can be assumed constant in longitudinal
motion and excess temperature equations with high
accuracy. The importance of the pressure gradient in a tube
cross-section can be seen from the Helmholtz equation for
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ideal fluid

i(ot—kz)

where the

Acp=Ag
, D =const, /I:kz—a)/cg and A, is

pressure

P=p.pe
the Laplace operator in the cross section plane [3]. If
olx, y): const and the pressure is constant in the cross-
plane, then A=0, the velocity
c=w/k =cq=const and propagation of the wave is

section wave

without dispersion. So, accuracy of the radial fluid motion
equation is the key to the exact solution of the whole
problem.

Dispersion Eq. 13 or 15 presents a solution for the
wave propagation in an elastic cylindrical tube with
viscous, compressible, heat-conducting fluid inside. For
real values of the wave frequency @, complex wave
numbers k (or non-dimensional product kry =—il'QQ) can

be evaluated. Several roots of the equation correspond to
different wave velocities and different ratios of
longitudinal and radial displacements of the tube and the
fluid. All properties of the fluid and elastic tube are related:
imaginary part of k (or real part of I'") defines attenuation
of the wave and depends not only on viscosity, heat-
conductivity of the fluid and damping in the tube material,
but also on the complex wave velocity as a whole.

Linearized fluid equations and the thermal
conductivity equation are solved for a circular tube only
when fluid and tube velocities are symmetrical with
respect to the central longitudinal axis, but the main ideas
and assumptions of the paper can be applied to a
cylindrical shell of arbitrary cross-section, too.

Thus, by investigating two levels of approximation
excellent coincidence with the published expressions for
the rigid tube is found. A comparison with the published
solutions for a deformable tube and ideal fluid is also
carried out.
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R. Bansevicius, V. Kargaudas

Bangos, sklindancios klampiame ir Silumai laidZiame skystyje
tampriame apskritame vamzdyje

Reziumé

Bangy sklidima klampiame Silumai laidziame skystyje Kirchofo
teorija apraSo tuo atveju, kai skystis yra standZiame apskritame vamzdyje.
Siame straipsnyje teikiamas apytikris klampaus, Silumai laidaus skys¢io
deformuojamame vamzdyje sprendinys. Jis visiSkai sutampa su kai
kuriais anksCiau skelbtais apytikriais sprendiniais, jei vamzdZio
tamprumo nepaisome, ir parodo klampumo bei Silumos laidumo skystyje
ir slopinimo vamzdzZio medZiagoje poveiki. Detaliai tiriamas gautasis
sprendinys ir jau skelbti tampraus vamzdZio su idealiu skysciu
sprendiniai.

Pateikta spaudai 2005 09 19



