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Introduction 

Electrostatic excitation is used for excitation of wave 

motion in a number of vibrating systems [1, 2]. The 

determination of the dielectrophoretic force and of the 

travelling wave force acting on a spherical particle in an 

electric field requires calculation of higher derivatives of 

the electrostatic potential [1]. Thus, their determination 

from a conventional finite element formulation would 

require dense meshing for producing a sufficiently smooth 

field.  

Here application of the technique of multiple 

conjugate approximation with smoothing for calculation of 

the second derivatives of the electrostatic potential is 

developed. This smoothing technique is similar to 

conjugate approximation used for the calculation of nodal 

values of stresses in [3, 4] and enables to obtain the second 

derivatives of the electrostatic potential of acceptable 

quality on a rather coarse mesh by using the conventional 

finite element formulation for the calculation of the 

electrostatic potential.  

Calculation of electrostatic excitation 

The electrostatic field is described by the equation: 
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where φ  is the electrostatic potential, x and y are the 

orthogonal Cartesian coordinates. This problem is solved 

by applying the conventional finite element formulation 

[3]. 

The application of the procedure of multiple conjugate 

smoothing for calculation of the second derivatives 

consists of two parts: 

1. Calculation of the first derivatives of the 

potential; 

2. Calculation of the second derivatives of the 

potential on the basis of the first derivatives 

obtained previously. 

So the first problem is to obtain the gradients of the 

potential of acceptable quality. 

The gradients of the potential at the points of 

numerical integration of the finite element are calculated in 

a usual way: 
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where {δ} is the vector of nodal potentials obtained as a 

result of solving of the system of linear algebraic equations 

of the conventional finite element formulation of Eq. 1 as 

described in [3]; [B] is the matrix relating the gradients of 

the potential with the nodal potentials. The potential is 

continuous at inter-element boundaries, but the calculated 

gradients of the potential due to the operation of 

differentiation are discontinuous.  

The appropriate gradients of the potential are obtained 

by minimising the following errors: 
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where λ is the smoothing parameter; {δx} is the vector of 

nodal values of 
x

x ∂
∂

=
φ

φ ; {δy} is the vector of nodal 

values of 
y

y ∂
∂

=
φ

φ ; [N] is the row of the shape functions 

of the finite element; [B*] is the matrix of the derivatives 

of the shape functions (the first row with respect to x; the 

second – with respect to y).  

This leads to the following systems of linear algebraic 

equations for the determination of each of the components 

of the gradient of the potential: 
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The second problem is to obtain the second derivatives 

of the potential of acceptable quality. For this purpose the 

vector { }δ  is formed as the first component of the vector 

{δx}, the first component of the vector {δy}, the second 

component of the vector {δx}. 
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The second derivatives of the potential at the points of 

numerical integration of the finite element are calculated 

as: 

 [ ]{ }δ

φ

φ

φ

B

yx

y

x

=































∂∂
∂

∂

∂
∂

∂

2

2

2

2

2

, (5) 

where [ ]B  is the matrix relating the second derivatives of 

the potential with the vector { }δ : 
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where N1, are the shape functions of the finite element. 

The previously obtained gradients of the potential are 

continuous at inter-element boundaries, but the calculated 

second derivatives of the potential due to the operation of 

differentiation are discontinuous.  

The appropriate second derivatives of the potential are 

obtained by minimising the following errors: 

 

[ ]{ }( )

[ ]{ }( )
{ } [ ] [ ]{ }

,
**2

1

2

1

2

22

2

∫∫

∫∫















+

+−
=

=










































∂

∂
+








∂

∂
+

+−

dxdy
BB

N

dxdy

yx

N

xx
TT

xx

xxxx

xxxx

xxxx

δδλ

φδ

φφ
λ

φδ

 

 
[ ]{ }( )

{ } [ ] [ ]{ }∫∫ 













+

+−
dxdy

BB

N

yy
TT

yy

yyyy

δδλ

φδ

**2

1
2

, 

 
[ ]{ }( )

{ } [ ] [ ]{ }∫∫ 













+

+−
dxdy

BB

N

xy
TT

xy

xyxy

δδλ

φδ

**2

1
2

, (7) 

where {δxx} is the vector of nodal values of 
x
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This leads to the following systems of linear algebraic 

equations for the determination of each of the components 

of the second derivatives of the potential: 
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The choice of the smoothing parameter is performed 

interactively from a qualitative view of the isolines of the 

second derivatives of the potential. When the smoothing 

parameter is too small, the images are of unacceptable 

quality because of the unphysical behaviour of the isolines 

as a result of their calculation from the conventional finite 

element formulation. When the smoothing parameter is too 

big, over-smoothed images of isolines are obtained which 

may look acceptable but be incorrect. So the best value of 

the parameter might be considered when most of the 

images of isolines are of acceptable quality without the 

unphysical behaviour produced by the approximation. 

The choice of the smoothing parameter is based on the 

numerical effectiveness of the formulation: when the same 

value of the smoothing parameter is applied in both stages 

of the analysis the matrixes of the systems of linear 

algebraic Eq. 4 and 8 are the same. Numerical experiments 

show that this choice produces acceptable results and thus 

is to be recommended. 

Numerical results 

The rectangular domain is analysed. On the left and on 

the right boundaries periodic boundary conditions are 

assumed: that is the values of the electrostatic potential for 

the same y coordinates on those boundaries are mutually 

equal. On the upper boundary the electrostatic potential is 

assumed to be equal to zero. On the lower boundary the 

electrostatic potential is assumed to change as a period of a 

sin function.  

The unsmoothed isolines of the second derivatives of 

the potential are shown in the Fig 1, Fig. 2 and Fig.3. The 

figures show the unphysical oscillations of the results 

produced by the approximation. 

The smoothed isolines of the second derivatives of the 

potential are shown in the Fig.4, Fig. 5 and Fig. 6. It is 

evident that the smoothing procedure suppresses the 

unphysical oscillations produced by the approximation. 

 

 

Fig. 1. Unsmoothed isolines of the values of xxφ  
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Fig. 2. Unsmoothed isolines of the values of yyφ  

 

Fig. 3. Unsmoothed isolines of the values of xyφ  

 

Fig. 4. Smoothed isolines of the values of xxφ  

 

Fig. 5. Smoothed isolines of the values of yyφ  

 

Fig. 6. Smoothed isolines of the values of xyφ . 

Conclusions 

For precise investigations of the second derivatives of 

the potential the representation of the results by the digital 

image of isolines is to be used. 

The application of the procedure of multiple conjugate 

approximation with smoothing is proposed for the 

elimination of the unphysical oscillations produced by the 

approximation. This smoothing procedure enables the 

calculation of the second derivatives of the potential on 

rather coarse conventional finite element meshes. Those 

fields of the higher derivatives of the potential are 

necessary for calculation of some types of forces acting in 

vibrating mechanical systems. 

The choice of the smoothing parameter is based on the 

numerical effectiveness of the formulation: when the same 

value of the smoothing parameter is applied in both stages 

of the analysis the matrixes of all of the systems of linear 

algebraic equations used in the procedure of multiple 

conjugate smoothing are the same. Numerical experiments 

show that this choice produces acceptable results and thus 

is to be recommended. 
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K. Ragulskis, R. Maskeliūnas, L. Zubavičius 

Kartotinis jungtinis glotninimas dinaminiam sužadinimui 

apskaičiuoti 

Reziumė 

Elektrostatinis sužadinimas naudojamas virpamosiose mechaninėse 

sistemose. Jėgos, veikiančios sferinę dalelę, išreiškiamos per aukštesnes 

elektrostatinio potencialo išvestines. Tiriamas kartotinės jungtinės 

aproksimacijos glotninimu taikymas antrosioms elektrostatinio potencialo 

išvestinėms apskaičiuoti. 
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