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Abstract 

Interest in sound insulation properties of cylindrical shells has been expanding within past five years, their use in reducing 
environmental noise in various fields was investigated [1, 2, 3]. To fully understand the properties of cylindrical shells we should 
analyze the mechanical properties of constructions, as well as wave propagation and sound radiation. With this aim in view, theoretical 
presumptions of different authors on this issue were reviewed. The possibilities of the use of the theory of sound insulation of cylindrical 
shells and pipelines were elucidated. 

The authors set a task of creating sound insulation measures by using the complex of cylindrical shells and pipelines with the 
elements of other shapes. In particular, it is possible to go over to statistical characteristics. Finally, of interest could be various 
corrections, conditioned by the ultimate thickness of the shell. In this connection, it is possible to indicate a number of precise solutions 
of the dynamic theory of elasticity, suitable for shells of any thickness. However, the concrete numerical results here are still too few. 

Theoretical solutions carried out in this paper will help to concentrate attention to the use of the properties elucidated in solving 
practical engineering issues related to reduction of industrial and environmental noise.  
Keywords: sound insulation, cylindrical shells and pipelines. 
 
Introduction 

The broad application of cylindrical shells as the 
elements of constructions evokes interest in respect of the 
calculation of dynamic properties of those shells [1, 2, 3, 
4]. As regards the issues of vibrations of pipelines, special 
interest was focused on the problems relating to the 
propagation of waves in cylindrical shells [5, 6]. Excitation 
of vibrations in the shells on the part of the medium, 
random vibrations, sound insulation and damping and a 
number of other problems of a more special content was 
the object of research. Here special attention will be 
accorded to long lines, since it is the waveguide approach 
that is adequate at the highest degree to the properties of 
the construction under study.  

Theory 

Propagation of waves in the closed cylindrical shell 

 | | , ru h h R    on the basis of known equations 

[7] is given by: 
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  (2) 

where 1 2 3, ,U U U  are the components of the vector of 

displacement (see Fig 1), ,,, cRh r  are the parameters of 

the shell: thickness, radius, sound propagation speed in the 
shell material, Poisson�s coefficient, accordingly 
  

 
Fig. 1. Sketch to the choice of designations 

The theory of thin shells was studied by a number of 
authors [7, 8, 9]. In particular, in the work [9], with the 
introduction of Young�s complex modulus, special 
damping of vibrations was taken into account. Solution is 
found in the form of traveling waves 

 expi iU V ikz in i t    . Wave numbers of some lower 

forms  k k   are presented in Fig. 2 and 3. 

Each traveling wave (of eigen forms of the long duct) 
is identified at the low frequencies with the wave of a 
transversal type, shear wave or with the flexural wave, in 
dependence on the characteristic specificities of 
deformations and propagation velocity. 

There is dependence of eigen frequencies of 
transversal resonance of the shell on the internal constant 
pressure. At 0p   the shell gets extended by the internal 

pressure and frequencies at 0p   the shell gets 

compressed and when reaching the critical value the loss of 
stability may occur. The critical values of instability for nth 
form are according to Euler.  
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Fig. 2. Dependence of eigen frequencies of the transversal resonance 
of the shell on the extension ( 0  ) in the circular direction  

and  compression ( 0  ) 

 

 
 

Fig. 3. Dependence of eigen frequencies of the transversal of the shell 
on the compression and extension 

 

 
Table 1 

2 2/12 rh R   

310   410   510   610   n 

bending extension bending extension bending extension bending extension 
1 0.21 1.41 0.0071 1.41 0.0021 1.41 0.00071 1.41 
2 0114 2.24 0.035 2.24 0.0084 2.24 0.0026 2.24 
3 0.270 3.16 0.084 3.16 0.032 3.16 0.027 3.16 
4 0.490 4.12 0.158 4.12 0.0447 4.12 0.049 4.12 
5 0.775 5.10 0.245 5.10 0.100 5.10 0.079 5.10 
6 1.12 6.09 0.346 6.08 0.100 6.08 0.104 6.08 
7 1.53 7.07 0.49 7.07 0.141 7.07 0.155 7.07 
8 2.01 8.07 0.624 8.06 0.200 8.06 0.202 8.06 
9 2.54 9.06 0.806 9.06 0.245 9.06 0.256 0.05 

10 3.14 10.05 1.0 10.05 0.316 10.05 0.316 10.05 

 
 

In Table 1 the critical frequencies of the transversal 
resonance of the closed shell for different   are presented. 

Even though the indicated types of problems are quite 
of importance for investigation of the propagation of wave 
energy, further steps in this respect should approximate us 
to the real object. For example, the significant value of the 
internal pressure 0q  causes the primary membrane state of 

stress: 
 
 

 0 ,rR
q

h    (3) 

where   is the hoop tensile stress in a long shell. This 

circumstance in its turn leads to the considerable increase 
of resonant frequencies. Actually, the equation of 
movement of a shell (Eq.1) in this case will contain the 
following operators [10]: 
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, (4) 

 
 
which lead to the following dispersion equation 

extension 

compression 

(p) 

compression 
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x() 
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. (5) 

 
Consequently, it is possible to find the corresponding 

increase of frequencies (see Fig. 2). Damping of vibrations 
of the shells was studied, mainly on the basis of notions, 
related to the concept of the Young�s complex modulus. 

The physical theory of damping did not find the 
sufficiently broad application [11, 12]. The number of 
works in this field is quite few [13, 14]. A descriptive 
method of absorption with the help of introduction of the 
force of a viscous friction, applied in some works [15], in 
general is not scientifically well-founded and contradicts 
the known physical facts [16]. Theoretical issues related to 
the aerodynamic excitation of shells on the part of the 
moving medium have been studied insufficiently. Even in 
the linearized statement, the sufficiently full investigation 
of the combined movement and acoustic medium is absent. 
The above-indicated circumstances make analysis of the 
picture of vibrations of real objects more difficult. The 
statement of the problems on the interaction of shells with 
the gaseous medium may be conditionally subdivided into 
the following conventional groups: 

 The forced (random and determined) vibrations of 
shells. 

 Sound insulation of shells. 
 Stability of shells in gas flows. 

The first series of problems is related with the 
preliminary solution of a wave equation for the gaseous 
area, limited by rigid walls. Further, this obtained pressure 
is introduced into the first part of the equation of the 
movement of a shell, which takes the following form 
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Here 1p  and 2p  is the sound pressure on the shell 

surfaces from inside and outside accordingly (see Fig. 1). 
The considerable number of problems of that type is given 
in the book by M.A. Ilgamov [17]. Probably, the indicated 
type of solution may give the acceptable results when 
estimating the strength of shells, whereas for the sound 
insulation purposes it seems to be unacceptable. Issues of 
sound insulation of shells are exactly conditioned by those 
subtle effects, in respect of which consideration of 
interaction is of importance. Problems of interaction of 
shells and medium were studied by numerous authors [18, 
19, 20, 21, 22]. Some of the statements are more distinct, 
in some of those works clarity and precision of solution are 

absent. In a general case, solution of such problem is 
related to the joint consideration of the equation of the 
movement of a shell (Eq. 2) and of the wave equation for 
the sound field in the medium under the shell and outside 
the shell: 
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where 0c  is the velocity of sound in the medium, at the 

corresponding boundary conditions on the inner and outer 
surfaces of a shell, meeting the requirement of the absence 
of breaks (cavitation) between the shell and the medium 
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where 0  is the density of the medium. 

For mathematical solution of the problem, it is also 
necessary to set the excitation in the form of the sources of 
sound situated at the sufficient distance from the shell. 
Finally, it is important to define the concept of sound 
insulation in such a way that this concept would reflect the 
essence of the phenomenon and could be measured. As the 
coefficient of sound insulation it is possible to take the 
relation of some value, characterizing the field, in the 
presence of the shell to the corresponding value when the 
sound-insulating device (shell) is absent. This definition 
may be demonstrated by the examples from works [23] and 
[24]. For the case when the radiator represents the 
cylindrical dipole, located on the axis of the shell, sound 
insulation for points, situated outside the shell, will be in a 
decibel scale:  
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the functions of Bessel and Neumann, accordingly; R is the 
sound insulation. 

For the case of the multipole of n-th order, the sound 
insulation will be 

, 
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The corresponding curves are presented in Figs 4 a and 
b. 
 

   
 

 
 
Figs 4. Sound insulation of the cylindrical shell (h=2 mm, Rr =300 

mm) in air at the multipole (n=1 and n =2) sources of sound, 
located on the axis 

 
Other statements of the problems of sound insulation 

with the use of statistical specifications are given in works 
[13, 25]. 

Issues of the stability of shells in the gas flow with or 
without consideration of the boundary layer are linked with 
the joint solution of equations of the theory of shells and 
equations of mechanics of the moving continuous medium 
[26]. Here also are possible some or other approximated 
approaches, however, the numerical results are quite few 
as a result of awkwardness of solutions [22, 27]. 

The problems are connected with the simultaneous 
solution of equations of the movement of shells (Eq.2) and 
wave equations for the moving medium with the velocity 
v: 

 under the shell 
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 the medium at rest outside the shell 
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 at the boundary conditions, reflecting the contact 
of media with the shell 
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Roots of the dispersion equation obtained there have 
the imaginary and real parts that may take the negative 
value: 

 e , 0ikx in i t
i i mU V I k     (15) 

this exactly pointing to the possible instability (of a flutter 
type). 

Other statements of problems on vibration of 
cylindrical shells exist that may find application as regards 
the issues of dynamics of gas pipelines. Of special 
importance, for example, may be the problems concerning 
the propagation of vibrations through the limited shell at 
the heterogeneous boundary conditions. This problem may 
serve as the calculation model of excitation of vibrations in 
the gas pipeline from compressors. Let, for example, 
excitement be set in the form of the kinematic boundary 
conditions: 
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Expanding the boundary conditions into Fourier series 
along the angular coordinate   and dividing variables, we 

obtain from (Eq.1) the following system of ordinary 
differential equations with the constant coefficients  
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with boundary conditions: 
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The general solution of that system of ordinary 
equations shall be found by common methods (see Fig 5) 
[5]. 
 

 
 
Fig. 5. Frequency transfer functions of the cylindrical shell: |F(l)| the 

force of reaction in the sealing; |U(o)| amplitude of excitation 
at the other end 

In particular, it is possible to go over to statistical 
characteristics. Finally, of interest here may be different 
corrections, conditioned by the final thickness of the shell. 
In this connection, it is possible to point out a number of 
precise solutions of the dynamic theory of elasticity that 
are suitable for the shells of any thickness [7, 22]. 
However, concrete numerical results here have been very 
few so far. 

Conclusions 

1. Even though a cylindrical shell is the object of 
numerous theoretical investigations, the sufficiently 
precise material, suitable for practical engineering 
calculations, is still insufficient.  

2. Theoretical solutions carried out in this paper will 
help to concentrate attention to the use of the properties 
elucidated in solving practical engineering issues related to 
reduction of industrial and environmental noise.  
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Cilindriniø kevalø garso izoliacijos teorijos plëtra ir taikymas 
praktikoje 

Reziumë 

Pastaruosius penkerius metus didëja susidomëjimas cilindriniø 

kevalø garso izoliacijos savybëmis, jø panaudojimu aplinkos triuk�mui 
ma�inti [1, 2, 3]. Norint gerai suprasti cilindriniø kevalø savybes, reikia 
i�nagrinëti �iø konstrukcijø mechaninius ypatumus, bangø sklidim¹ ir 

garso i�spinduliavim¹. Tam buvo ap�velgtos skirtingos teorinës prielaidos 
dël cilindriniø kevalø ir vamzdynø garso izoliacijos panaudojimo 

galimybiø. Autoriai turi tiksl¹ sukurti garso izoliacijos priemones 
naudodamiesi cilindriniø kevalø ir vamzdynø kompleksu su kitø formø 

elementais. Straipsnyje aptarti teoriniai sprendiniai padës sutelkti dëmesá á 
praktinius in�inerinius klausimus, lieèianèius gamybinio ir aplinkos 
triuk�mo ma�inim¹.  
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