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Abstract 

Advanced research into non-destructive control of industrial pipeworks provides several acoustical methods for inspection of their 
structural integrity. Applying guided waves is one possible solution to detect and identify different flaws. Many studies have shown the 
importance of complex waves describing the interaction phenomena at the vicinity of the defects, modeled as geometrical 
discontinuities. Therefore it is important to understand the behavior of this type of waves in order to describe correctly wave interaction 
with the discontinuities like joints, cracks and solid deposits. This paper presents theoretical study of axi-symmetric longitudinal guided 
and complex wave propagation and in elastic pipes. The asymptotic dispersion equation of the pipe gives a comprehensive 
representation of all wave types presented in the structure: propagating, non-propagating and inhomogeneous waves. Dispersion curves 
corresponding to real, imaginary wave number for the longitudinal modes in a wide frequency-thickness range and different radii of the 
pipe are given.  
Keywords: non-destructive evaluation, cracks, semi-infinite pipe, guided waves, inhomogeneous waves. 
 
Introduction 

In several industries the inspection of pipelines is an 
important problem and the need for reliable assessment 
applications has been announced by numerous pipeline 
accident reports [1]. Attractive solution for this is to apply 
ultrasonic guided waves in the pipe inspection because this 
method allows to investigate inaccessible areas (insulated 
pipes) and long distances of the pipe wall from a single 
point. Therefore this unique technique widely reduces 
inspection time and costs compared to the ordinary point-
by-point testing in large pipeworks. The practical study in 
this field has been very intensive and lead to 
implementation of various testing techniques and creation 
of commercial transducer systems [2-10]. 

Defects such as cracks and corrosion pits that can 
develop in circumferential direction in the pipe can be 
detected by screening the pipeline with axially propagating 
guided waves. As the guided waves travel through the pipe 
wall, they are affected by the features they encounter and 
are scattered. The scattering of guided elastic waves from 
defects located within a waveguide has been one of the 
major research targets in nondestructive evaluation [11-19] 
but still the understanding of all the details of this 
phenomenon is not quite clear. The defect serves as a 
source of new guided waves, which are dependants of the 
parameters of the defect, besides different non-propagating 
and complex waves occur in the waveguide interfering the 
near field measurements. Therefore the explanation of the 
nature of different wave modes would be a very useful tool 
in the evaluation of specific defect types in waveguide 
structures.  

In cases when tester device is placed near the edge of 
the waveguide or it is demanded to detect through-
thickness cracks it is beneficial to study near edge field of 
the waveguide structure. The wave field near the edge is 
accompanied by evanescent waves that do not propagate 
into the pipe and can perturb signal interpretation in near 
edge measurements [19]. A considerable amount of work 
has been done on the reflection of guided waves at a free 
edge of plates and rods [20-25] but to the author�s 

knowledge the guided wave scattering problem in 
cylindrical pipes [13,26] has received much less attention. 
It is probably so due to the fact that the axisymmetric wave 
propagation in large radius thin-walled pipe structure 
resembles to Lamb waves in a plate as was shown by Silk 
and Bainton [27]. However, the effect of curvature 
becomes essential in wave propagation characteristics in 
thick pipes at low frequencies and therefore needs some 
further study. 

The aim of present study is to develop analytical wave 
propagation model for cylindrical pipes to help interpreting 
the behavior of longitudinal wave modes L(0,1), L(0,2), � 

The properties of different wave modes (propagating, non-
propagating, inhomogeneous) are expressed in the form of 
frequency dependent dispersion curves, presenting phase 
velocities and wave numbers and through-thickness mode 
shapes. This paper focuses primarily on the study of 
curvature effects of longitudinal wave propagation 
characteristics. 

Theory. Modes of elastic wave propagation in 
hollow cylinder 

The general three-dimensional solution of the wave 
propagation in hollow cylinder of infinite extent (Fig.1) 
was documented by Gazis [28] already in 1959. In the 
framework of linear theory of elasticity he obtained a 
characteristic equations, which described three special 
families of modes identified as symmetric longitudinal and 
torsional modes and nonaxisymmetric flexural modes. 
Later Meitzler [29] used conventional labeling for these 
modes as L(0,m), T(0,m) and F(n,m), where first index 
indicates the circumferential order and second number is a 
counter in order of appearance of different modes in one 
wave family. In general, there are an infinite number of 
individual modes within each wave family, whose wave 
numbers , for a given frequency-pipe thickness product 
fd, represent permissible solutions to a characteristic 
dispersion equation (a brief derivation of the dispersion 
equation, displacements and stresses is provided in 
Appendix A)  
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where cL, cT � longitudinal and shear velocity of the 
medium a, b � inner and outer radius of the pipe, 
respectively. In general, the roots of the dispersion 
equation can be real, imaginary or complex. A purely real 
solution describes a wave mode propagating with no 
attenuation; imaginary solution describes a 
nonpropagating, or evanescent mode. This is essentially a 
mode that is critically damped and thus does not 
propagate. Mostly, the interest in using these non-
propagating modes for describing stress and displacement 
fields very close to the wave sources (for example 
discontinuities), but it is unimportant in the far field. 
Complex roots describe a propagating wave mode that is 
attenuating with distance from the source and are called 
inhomogeneous wave modes. Although several 
investigation have been performed on the explanation of 
complex roots in plates and rods [20, 21], the nature of 
complex frequency spectrum of the pipe is not thoroughly 
investigated. One reason for this is that the wave 
propagation in large radius pipe structure is very similar to 
the wave propagation in a plate and thus using complicated 
pipe solutions was not reasoned. However, many 
inspection procedures have been adjusted to low 
frequencies where the effect of the curvature of the pipe 
might become noticeable in wave propagation and 
intensifies when the pipe inner radius a  0, resulting the 
wave modes of a solid cylinder.   

 

Fig. 1. Formulation of the problem in cylindrical coordinates 

Numerical results. Dispersion curves and mode 
shapes 

The dispersion curves are very important to the post 
processing of the inspection results, from which the, 
defects and other features of the structure can be 
identified, located and sized. A sample phase and group 
velocity dispersion curves are presented in Fig.2 and Fig.3, 
correspondingly. Material properties employed in this 
study are shown in Table I. There are many different 
longitudinal wave modes L(0,m) which can propagate at 
different speeds, and they are, in general, frequency-
dependent, or dispersive. Group velocity curves in Fig.3 
indicate the speed of propagation of wave packet and are 

therefore the curves of particular interest for long-range 
propagation. The effect of dispersion on a propagating 
mode means that the shape of the wave packet is distorted 
and the peak amplitude of the packet decreases. Thus, this 
phenomenon refers to reduction in resolution and therefore 
is undesirable in long range testing. To avoid dispersion 
effects when using tone bursts of limited bandwidth the 
excitation points must be chosen in regions where the rate 
of group velocity change with respect to frequency is 
minimal. Operating points of this type are marked by 
circles on the group velocity dispersion curves in Fig.3.  

Table I. Material parameters used for of the pipe. 

 (kg/m3) cL (m/s) cT (m/s) E (MPa)  

7800 5840 3150 200 0.3 

 
Next parameter of interest that affects the wave 

propagation is the curvature. From the figures it can be 
clearly seen that the effect of the curvature of the pipe is 
most noticeable at low frequencies. As the frequency 
increases the pipe starts to vibrate like a plate. The effect of 
changing the inner radius from a = 16.5 to a = 0 is 
demonstrated by transitions �I� and �II�. This will cause 
shift of operating points into higher frequencies and the 
small change of group velocities as it is seen from 
transitions 1  2 and 3  4 in Fig. 3. It was also found 
that the difference of the group velocity speed of the 
operating point of L(0,2) mode is approximately 4%  
between in a plate and a pipe with thickness to inner radius 
ratio d/a = 0.5. Therefore in long-range inspection 
procedures the curvature effect is rather perceivable. 

In addition to real wave modes, there also exists at any 
given frequency a finite number of imaginary and an 
infinite number of complex wave modes. In order to obtain 
all the roots of interest a simple root finding routine was 
used. This was based on finding the local minima of the 
absolute value of the dispersion equation  (A.4). When 
calculating complex roots, Hankel functions were used 
instead of Bessel functions through (A.5-A.6) because they 
provided better numerical stability. When Hankel functions 

1  and  0)( ,0)( )2()1(  xxHxH nn  the asymptotic 

expressions were used  
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A number of wave modes have been represented in 
Fig. 4 in a large frequency-thickness range fd = [0 . . . 10] 
MHz-mm. The complex roots are extensions of the higher-
order wave branches below their cutoff frequencies and are 
denoted as C1, C2, . . . The complex branches disappear at 
those frequencies where new real or purely imaginary 
branches appear. Thus, with an increase in frequency, a 
nonpropagating mode can decay more slowly and 
eventually become a propagating mode, but at some 
frequencies the opposite is also true. As a matter of fact the 
complex roots occur in fours, one in each of the four 
quadrants of the î plane, while the real and imaginary 
solutions occur in pairs. Therefore the selection of proper
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Fig. 2. Phase velocity dispersion curves for (       ) plate, (       ) pipe with a =16.5 mm, b = 17.5 mm, (        ) solid  cylinder b = 17.5 mm.
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Fig. 3. Group velocity dispersion curves for (       ) pipe with a =16.5 mm,  b = 17.5 mm, (           )  solid  cylinder b = 17.5 mm. 

 
root must be used in solution [21] to fulfill the physical 
meaning of the scattering mechanism near discontinuity, 
the nonpropagating and inhomogeneous modes must decay 
with the distance from the source. Fig. 5 shows the 
evolution of lower order complex and imaginary modes 
when changing the inner and outer radius of the pipe. New 
complex mode C0 appears which is the extension of L(0,2) 
mode below its cutoff frequency. Remarkable change is 
seen in behavior of dispersion curves when pipe becomes a 

solid cylinder, however the curvature effect is decreasing 
when Im() is increasing. 

Another important characteristics that describe wave 
modes are their displacement and stress fields. Each mode 
has a unique through-thickness mode shapes, which assist 
us selecting right wave mode for a particular testing 
operation. Axisymmetric longitudinal wave modes have 
two displacement (A.7) and three stress components (A.8), 
each of them varying across the thickness of the pipe wall 
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Fig. 4. Axial wavenumber î dispersion curves. (        ) real and imaginary modes, (          ) complex modes for a pipe. a = 17.5 mm, d = 1 mm. 
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Fig. 5. Im(î) dispersion curves. (       ) a = 17.5 mm, d = 1 mm, (          ) a = 2 mm, d = 17.5 mm, (            ) a = 0, d = 17.5 mm. 
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and in frequency space. In addition the variation of the 
thickness of the pipe can change the mode shapes. These 
effects are shown in Fig.6-8 for different wave modes at 
different frequencies. It can be seen that the symmetry and 
antisymmetry of displacement profiles (cases a) in Fig. 6 
and Fig.7, which is inherent for plate structures, is 
corrupted in thick pipes (cases b). Moreover, the changes 
can be rather profound. For instance, at low frequencies 

the mode L(0,1) becomes a compressional wave as it is 
seen in Fig. 6 at frequency fd = 0.1 MHz-mm. The wave 
field of higher order complex modes (see C6 in Fig.8) 
changes rapidly across the thickness of the pipe and 
therefore their amplitudes in scattering process must be 
smaller than propagating waves when the scattered has a 
flat boundary (plate).  

 

0 0.5 1

0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 0.5 1

-0.5

0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 0.5 1

-0.5

0

0.5

1
N

or
m

al
iz

ed
 a

m
pl

itu
de

0 0.5 1

-0.5

0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

fd = 0.1 MHz-mm fd = 0.5 MHz-mm fd = 2 MHz-mm fd = 5 MHz-mm a) 

 

0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

Normalized thickness

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 0.5 1

-0.5

0

0.5

1

Normalized thickness

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

Normalized thickness

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 0.5 1

-0.5

0

0.5

1

Normalized thickness
N

or
m

al
iz

ed
 a

m
pl

itu
de

fd = 0.1 MHz-mm fd = 0.5 MHz-mm fd = 2 MHz-mm fd = 5 MHz-mm b) 

 

Fig. 6. Axial uz (      ) and radial ur (         ) displacements for L(0, 1) mode. a) a =17.5 mm, d = 1 mm; b) a = 8.75 mm, d = 17.5 mm 
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Fig. 7. Axial uz (      ) and radial ur (         ) displacements for L(0, 2) and C0 mode: a) a =17.5 mm, d = 1 mm; b) a = 8.75 mm, d = 17.5 mm.  
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Fig. 8. Module of axial uz (      ) and radial ur (         ) displacements for C1 and C6 mode: a =17.5 mm, d = 1 mm. 

 
Conclusions 

A compact analytical theory of axisymmetric 
longitudinal wave propagation in infinite pipe was given. 
The dispersion curves of propagating, nonpropagating and 
inhomogeneous wave modes were presented for various 
thickness-inner radius ratios. From the analysis of group 
velocity frequency spectrum and through-thickness mode 
shapes at different frequencies the fact that curvature 
affects the wave propagation at lower frequencies was 
validated.  
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Appendix A 

For detailed analysis, reader is referred to look into 
following publication [29]. Demanding stress free surfaces 
of the tube at r = a and r = b in case n = 0 (Fig.1) leads to 
the dispersion frequency equation for axisymmetric 
longitudinal modes  
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Here 

 ,/      ,/ 22222222   TL cc  (A.3) 

cL and  cT  � velocities of compressional and shear waves of 
the medium,  =2f � ring frequency,   � axial wave 
number, J, N � Bessel functions. The remaining two rows 
of the system (A.1) are obtained from the first two by 
substitution of b for a. To obtain nontrivial eigen solutions 
, the characteristic equation should be  

   .0GDet  (A.4) 
Using notations  
 ),()()( 0301 rNCrJCrf    (A.5) 

 
 ),()()( 1412 rNCrJCrh    (A.6) 

the displacements and stresses are  
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 (A.8) 
where   and   are Lamé�s constants. 
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