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Abstract 

Switching to double inspection frequency after first fatigue crack discovery during aircraft inspection in operation is investigated. 
The method of calculation of the probability of fatigue failure based on the use of Markov chains theory is offered. For inspection 
program development on a base of lifetime approval test result processing the use of p-set function and minimax approach is offered. In 
this case there is no necessity to look for dubious compromise choice of required reliability and confidence probability. 
Keywords: p-set function, minimax approach, inspection program, and approval test. 
 
 
1. Introduction  

Inspection program development should be made on 
the base of processing of lifetime test result. Usually a 
confidence interval is used for lifetime distribution 
parameter estimation and then for the reliability estimation. 
It is always very difficult to find compromise choice of 
required reliability and confidence probability. But if we 
should process some approval test data, when we should 
make some redesign of the tested system if some 
requirements are not met, then, as it will be shown later, it 
is possible to use minimax approach which provides 
required reliability independently of unknown parameters 
of lifetime distribution without use a confidence 
probability. For this purpose the p-set function definition is 
used. Here we consider some example of p-set function 
application to the problem of development and control of 
inspection program. We make assumption that some 
Structural Significant Item (SSI), the failure of which is 
failure of a system under consideration, is characterized by 
a random vector (r.v.) (Td , Tc ), where Tc is critical lifetime 
(up to failure), Td  is service time, when some  damage 
(fatigue crack) can be detected. So we have some time 
interval, such that if in this interval some inspection will be 
fulfilled, then we can eliminate the failure of the SSI. We 
suppose also that a required operational life of the system 

is limited by so-called Specified Life (SL), SLt , when 

system is discarded from service. 

2. P-set function definition 

P-set function for random vector is a special statistical 
decision function, which, in fact, is generalization of p-
bound for random variable, definition of which was 
introduced much earlier [1-5]. P- set function for random 
vector is defined in following way. 

Let Z and X are random vectors of m and n dimensions 

and we suppose that it is known the class {P,   } to 

which the probability distribution of the random vector 
W=(Z, X) is assumed to belong . Of the parameter , which 
labels the distribution, it is assumed known only that it lies 
in a certain set , the parameter space. If 
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then statistical decision function Sz(x) is p-set function for 
r.v. Z on the base of a sample x=(x1,...,xn). 

Later on the value x, observation of the vector X, 
would be interpreted as result of some test or (some times 

it is more convenient) as estimate � = )(� x  of parameter 

; Z would be interpreted as some random vector-
characteristic of some SSI in service: for example, 

),( cd TTZ  . For inspection program development the p-

set function defines the sequence of inspection moments, 
which defines some set Sz(x) of values of r.v. ),( cd TTZ  . 

3. Inspection program development  

By processing results of some special approval test 
(full-scale fatigue test of airframe, for instance), we can get 

estimate �  of parameter  . The problem is to find (in 

general case) a vector function )�(t , where 

),...,,( 21 ntttt  , ti is time moment of ith inspection, 

i=1,2,�,n, n is inspection number, 1nt SLt , in  such a 

way, that failure probability of SSI under consideration  
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does not exceed some small value :  

 


),(sup tp f , 

where nTT ,...,1  are moments of inspections: r.v. 

 ),...,( 1 nTTT  )�(t ; 00 T ; SLn tT 1 . This means 

that vector function )�(t  in fact defines some p-set 

function for vector ),( cd TT  at p= . 

Usually we put )1(1  idtti , nttd SL /)( 1 , 

ni ,...,2,1 +1. Then we should choose only 1t  and n . For 

simplicity purpose we put dt 1 (in general case 1t  can be 

id8933343 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

mailto:rauprm@junik.lv


ISSN 1392-2114 ULTRAGARSAS, Nr.2(59). 2006. 

 60

chosen, for example, as parameter-free p-bound for Tc, or 
we can try to get minimum of expectation value of n  at 
fixed required reliability, etc) . Now probability of failure 
will be function of   and n  and we�ll denote it by 

),( np f  . We suppose existence of some )(00 nn  such 

that for 0nn  the function ),( np f   monotonically 

decreases when n increases and 0),(lim 


np f
n

  for all 

 . Let ),( n  is minimal inspection number n  such that 

 ),( np f , where   is some small value. But true 

value of   is not known. So ),�(� nn   and 

)�,(� npp ff 
 
are random variables. We suppose, that we 

begin the commercial production and operation only if 
some specific requirement to reliability are met. Let us 

denote in general case this event as 0
�  , where 

0 , 0  , is some part of parameter space. We suppose, 

that if 0
�   (in this paper we suppose that 0

�  if 

required inspection number for some fixed   exceeds 
some threshold maxn  or estimate of expectation value of 

cT  is too small in comparison with SLt ), then we make 

redesign of the SSI in such a way, that probability of 
failure after this redesign will be equal to zero. 

 

 
Fig.1. Exponential model for experimental data approximation 

 
Let us define 
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For this type of strategy the mean probability of 
fatigue failure )�(),( 0fpEw   is a function of   and 

 . If for limited SLt it has a maximum, depending 

on  then the choice of maximal value of *   for 

which Rw  1),(max *


 and inspection number 

n *),�( n  is such strategy for which required reliability 

R is provided. 

4. Numerical example 

The simplest example of considered approach with 
unchangeable interval between inspections is given in [5]. 
The disadvantage of this strategy is a large number of 
inspections in the initial period when the probability to 
discover the fatigue crack is negligibly small.  In this paper 
we consider more complex strategy when the inspection 

program, preliminary developed on the base on approval 
test information, later on can be changed after discovery of 
first fatigue crack. 

The numerical calculations will be based on 
exponential approximation of fatigue crack growth 
function when the size, )(ta , of fatigue crack is described 

by equation )exp()0()( Qtata  . Example of this type 

approximation of experimental data is shown in Fig.1. 
Then  

 QCQaaT ddd //)log(log 0  , 

 QCQaaT ccc //)log(log 0  , 

where a0  is a(0), da  is a crack size, when the probability 

to discover it is equal to unit, ac is a crack size, which 
corresponds to the maximum residual strength of an 
aircraft component allowed by special design regulation, 
Td is a time for crack to growth by its detectable size and Tc 
is a time for crack to growth by its critical size. In the 
simplest case let us suppose that a0, ad and ac are constants. 
Usually it is assumed that random variable 
log(TC) )log()log( QCC   has normal distribution. This 

means that log(Q) has normal distribution also. Suppose in 
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 E1 E2 E3 � En-1 En En+1 
En+2 

(SL) 
En+3 

(FF) 
En+4 

(CD) 

E1 0 u1 0 � 0 0 0 0 q1 v1 

E2 0 0 u2 � 0 0 0 0 q2 v2 

E3 0 0 0 � 0 0 0 0 q3 v3 

� � � � � � � � � � � 

En-1 0 0 0 � 0 un-1 0 0 qn-1 vn-1 

En 0 0 0 � 0 0 un 0 qn vn 

En+1 0 0 0 � 0 0 0 un+1 qn+1 vn+1 

En+2 

(SL) 
0 0 0 � 0 0 0 1 0 0 

En+3 

(FF) 
0 0 0 � 0 0 0 0 1 0 

En+4 

(CD) 
0 0 0 � 0 0 0 0 0 1 

 
Fig.2. Matrix of transition probabilities 

 
operation there is a park of N aircraft of the same type. 
And we choose the following strategy. We developed two 
inspection programs with n and (2n+1) inspections. We 
begin the operation of the park, using first program. But 
after at least one crack discovery we two times decrease 
interval between inspections on remains of aircraft park 
and continue the operation of every aircraft up to specified 
life but this time independently one from another. We 
suppose that after retrofit of aircraft on which the fatigue 
crack was discovered the probability of its failure up to 
specified life will be equal to zero. Let us refer to this 
strategy as SWn-strategy as distinct to WSn-strategy 
without frequency of inspections change.For failure 
probability calculation we need to use some results of 
Markov Chains theory. We define the set of states in 
following way. Let us denote the service of aircraft in 
certain ith interval (ti-1,ti) as a state Ei. For all i≤(n+1) there 
are three possible transitions from this state to another 
states, which are represent (1) transition into  next (i+1)th 
time interval or, if i=n+1, successful end of service( 
absorbing state En+2  (SL-state)), (2) transition into 
absorbing En+3 state (FF-state), corresponding to the 
fatigue failure, and (3) transition into absorbing En+4 state 
(CD-state), corresponding to discovery of the fatigue 

crack. The corresponding probabilities we�ll notate by iu , 

iq , iv  correspondingly. For all three absorbing states there 

are units in main diagonal. All the others probabilities of 
the considered matrix of transition probabilities are equal 
to 0. The corresponding matrix of transition probabilities is 
shown in Fig.2. If random variable )ln(Q  has normal 

distribution ),( 2
10 N  then conditional probabilities u  , qi  

are defined by formulas  
 1/  iii aau , 

 ))1/()(,0max( 11   iiii abaq , 

where  
   )/)/ln( 10  idi tCa , 

   )/)/ln( 10  ici tCb , 

(.) is distribution function of standard normal variable. It 

is clear that iii quv  1 . 

It is necessary to mention, that if we consider a park of 
N aircraft of the same type and if we are interested to know 
the probabilities of the failure  of at least one aircraft or 
crack discovery in at least one aircraft of the park  then 

instead of qi and ui  we should use N
iNi qq )1(1,  and 
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N
iNi uu )(,  . Let us denote this type of matrix by 

P(n,N,WS). In order to study SWn-strategy we need also 
matrix of P(n,N,SW) type. It is a matrix with n additional 
�absorbing� states, corresponding (after first fatigue crack 
discovery at time moment t i

, ni ,...,2,1 ) to transition into 
the �secondary� process defined by the matrix 
P((2n+1),1,WS) with (2i+1)th initial state. 

Now, for the simple example, let us consider SWn-
strategy with two initial number of inspections: n=2. The 
corresponding possible transitions in this case are shown in 
Fig. 3: after switching to doubled frequency the remaining 
time intervals are splits into two parts. In this case in the 
matrix P(2,N,SW) there are two additional (in comparison 
with P(2,N,WS) matrix) absorbing states CD1 and CD2 
(see Fig.4), corresponding to states EE3  and EE5 (see Fig. 
3) from the matrix P(5,1,WS). The states CD1, CD2 are 
absorbing states corresponding to �absorption� at the 
inspection 1 and inspection 2.  

 

E1 E2

EE1 EE2 EE3 EE4

Insp-1

Insp-1 Insp-2 Insp-3
TSL

TSL
E3

EE5 EE6

Insp-2

Insp-4 Insp-5

v1 v2

 
 

Fig. 3. Switching to the double inspection frequency state graph, 2-
inspections  initial model 

The structure of considered matrices can be described  
in following way: 

Q R 

0 I 

where I is matrix of identity corresponding to absorbing 
states, 0  is matrix of zeros. Then matrix of probabilities of 
absorbing in different absorbing states for different initial 
transient states is defined by formula  

   RQIB 
1  

 

 E1 E2 E3 
E4 

(SL) 
E5 

(FF) 
E6 

(CD) 

E7 

(CD 1) 

E8 

(CD 2) 

E1 0 u1,N 0 0 q1,N 0 v1,N 

 
0 

E2 0 0 u2,N 0 q2,N  0 0 

 
v2,N 

E3 0 0 0 u3,N q3,N v3,N 0 

 
0 

E4 

(SL) 
0 0 0 1 0 0 0 

 
0 

E5 

(FF) 
0 0 0 0 1 0 0 

 
0 

E6 

(CD) 
0 0 0 0 0 1 0 

 
0 

E7 

(CD1) 
0 0 0 0 0 0 1 

 
0 

E8 

(CD2) 
0 0 0 0 0 0 0 

 
1 

 
Fig. 4. The matrix P(2,N,SW) for SW2-strategy 

 
In general case by the use of relevant formulas for 

absorbing Markov Chains we can calculate the 
probabilities of absorbing in relevant states of the matrices 
P(n,N,WS), P((2n+1),1,WS) and then using P(n,N,SW) 
matrix we can calculate total probability of failure 
(absorbing  probability  in state FF) for the SWn-strategy . 

Let )|,( Pjib be item in ith row in jth column of matrix 

B corresponding to the matrix P. For example 
)),,(|,1( SWNnPjb is jth item of first row of matrix B , 

corresponding to matrix ),,( SWNnP , and it denotes the 

probability of absorption in state )1( jnE  , 
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3,...,2,1  nj , in the process defined by matrix 

),,( SWNnP . Specifically, for 3 ,2 ,1j  it is probability 

of absorption in states CD  , , FFSL  correspondingly. 
Probabilities )),,(|4,1( SWNnPb , )),,(|5,1( SWNnPb , 

are probabilities of �absorption� in  states D1 , D2, of the 
process, defined by matrix ),,( SWNnP . Probability 

)),1,(|32,12( WSnPnib   denotes the probability of 

absorption in state FF if the inspection frequency change 
takes place after i  inspections in a process defined by 
matrix ),,( SWNnP .  

The average number of failure in the park will be equal 
probability of failure (multiplied by unit) before 
�switching� to doubled frequency of inspections and 
probability of failure of one aircraft after this moment 
multiplied by (N-1): 

 

))).,1,12(|2,12()1(

)),,(|3,1(

)),,(|2,1()(

1

WSnPibN

SWNnPib

SWNnPbNE

n

i

f










 

 
 
 
 

Probability of failure of one aircraft NNEp ff /)( . 

By the use of Monte Carlo method for modeling 0
�  we 

can calculate the function )�(),( 0fpEw   , the average 

probability of failure of one aircraft in the park of N 
aircraft for SWn �strategy. Example of the calculation of 
the function ),( w , the probability of redesign, the 

reliability without inspection as function of 100 /)�(    

and corresponding initial data are shown in Fig.5. Let us 

remind that 0
�  can be considered as estimate of speed of 

fatigue crack growth (in log-scale) and in considered 

example we have event 0
�  , if  

1) for 1 =0.0001 (in this case approximate value of 

probability of at least one failure in park 

1  N=0.01) the required number of inspections 

),�(� nn   is more than 3 

or 
2) estimate of mean cT  lesser than SLt =40000 

(flights). 
 
 
 
 

 

 
 
Fig. 5. Function )�(),( 0fpEw   for 1 =0.0001, EsTc is estimate of )( cTE (Because of MATLAB-plot limitation instead of 0  in the 

figure the �th0�, instead of 0
�  the abbreviation Esth0, instead of  1  the th1 and theta1 are used !). NMK trials is the number of Monte 

Carlo trials (MC - sample size of 0
�  for every 0 ), Pr  is redesign probability, WinspR is reliability without inspections. 
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The maximum of the function )�(),( 0fpEw    for 

1  N=0.01 is equal to 0.0014. (It is worth to mention, 

that the maximum of this function exists because we make 
redesign of �week� structural significant item (when 
�speed� of fatigue crack growth, 0  is too high) and, on 

the other side, we do not need any inspection if structural 
significant item is too strong (when 0  is too small). So if 

required reliability (of one aircraft) is equal to 0.9986 then 
we for the SWn-strategy we should choose the inspection 
number for 1 N =0.01. For the considered example 

),�(� nn  =2. 

In this paper we have considered the strategy of two 
time decreasing of inspection interval at every discovery of 
fatigue crack in first period of operation. But similar 
calculation can be made if at every CD-event some specific 
strategy will be used. But this is subject of another paper. 
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