
ISSN 1392-2114 ULTRAGARSAS (ULTRASOUND), Vol. 62, No. 2, 2007. 

Sound insulation of the plane end walls of a semicylindrical housing 

D. Gužas 

Šiauliai University, Vilniaus St. 141, LT-5419, Šiauliai, Lithuania 
E-mail: danielius.guzas@fondai.com

Abstract 
In our previous work [1] a problem is solved  for estimation of sound insulation Rc – the lateral wall of the housing on condition 

that edges are rigid and do not transmit the sound. This is not always accomplished in practice, therefore when designing a question 
concerning the choice of the parameters of the ends so that they would not worsen Rc comes into forth. In this paper a problem will be 
considered on the sound insulation of an end wall by making a assumption that an end wall is rigid. In this work also a frequency case 
will be considered when a point source is located on the axis of a semicylinder. 

The problem is solved by series expansion of the sound pressure p1 inside the housing and the flexural displacement of the wall u 
in eigenfunctions of the boundary value problem. 
Keywords: sound insulation of the plates and shells, sound insulation of a housing. 
 
Introduction 

When considering the sound insulation of different 
machines and mechanisms (compressors, electric engines, 
ventilators, ducts, etc.), it is recommended to use 
semicylindrical housings [2]. 

Previously in our work [3] a problem was considered 
on the sound insulation of walls of a semicylindrical 
housing of the limited length. In it, however, the end walls 
were taken as rigid. 

It is of interest to define the sound insulation of end 
walls and to compare it with the sound insulation of the 
lateral ones. A problem is not simple, since it is difficult to 
calculate the insulation of the end outside. As a result, we 
shall consider a simplified model: a rigid semicylindrical 
shell is placed on the rigid base so that its radial 
displacement at r = a and azimuthal displacement at ϕ=0 
and ϕ=π  equal zero. 

In the problem of a particular case, we shall solve the 
sound insulation by means of expansion of the sound 
pressure P1 inside the housing and the flexure of the wall u 
in eigenfunctions of the boundary value problem.  

By satisfying the boundary functions a displacement of 
the neutral surface or flexure of the wall u was defined at 
the end. 

General solution of a problem about the sound 
insulation of end walls of a semicylindrical 
housing 

We shall consider the simplified model: a rigid 
semicylindrical shell lies on the rigid base so that its radial 
displacement at r = a and azimuthal displacement at ϕ = 0 
and ϕ=π  equal zero (see Fig. 1). 

 

 
Fig. 1. Diagram of the arrangement of the coordinate axes 

In this case the sound pressure inside the shell will be 
constituted of the waves of type 
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where Jn is the Bessel’s function of n series, αnk is the root 
of a dispersion equation 
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kb = ω/cb  is the  wave number in air, signs + and – in the 
exponential index denote waves travelling in the positive 
and negative directions along the axis z. For simplicity, we 
shall omit the time factor exp(-iωt) here and further on. 

This follows from the fact that F(r, ϕ, z) satisfies 
Helmholtz’s equation 

 , (2) ( ) ( ) 0,,,, 2 =+Δ zrFkzrF b ϕϕ

(it is possible to make sure of this by simple substitution) 
and the above-given boundary conditions.  

We shall represent the sound pressure under the 
housing in the form of three components: Pn (r, ϕ, z) is the 
primary incident wave on the end wall; Pn (r, ϕ, z) is the 
reflected wave from the end wall, if it is treated as 
absolutely rigid and Pref is the wave, reflected from the end 
wall, which is related to its radiation inside the housing. At 
z = 0, the first two components equal each other, i.e. Pn(r, 
ϕ, 0)= Pn(r, ϕ, 0). Thus the sound pressure under the 
housing will be 

( ) ( ) ( ) ( zrPzrPzrPzrPb refnn ,,,,,,,, )ϕϕϕϕ −−+= . (3) 

An equation of flexural vibrations of the end wall of 
the housing we shall write in the form of  

( ) ( ) ( ) ( 0,,0,,,, 2 ϕϕϕωϕ rPrPrmUrUB cb −=−ΔΔ ) .  (4) 

Here ( )23 112/ σ−= EhB  is the flexural rigidity of the 
wall; m=ρh is its linear density; E, σ  and ρ – Young’s 
module, Poisson’s ratio and density of material; h is the 
wall thickness; u is the displacement of the neutral surface 
of the wall; Pc is the sound pressure, related to the wall 
radiation outside. If the conditions of radiation of the end 
wall inside and outside of the housing are the same, then 
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Pref (r, ϕ, 0) and Pc(r, ϕ, 0) would differ only by the sign, 
and the right part of Eq.4 will be written as 

 ( ) ( 0,,20,,2 )ϕϕ rPrPP refn −= . (5) 
The solution of the problem in this case will be 

simplified considerably. Correlation Eq.5 will take place at 
the frequencies higher than the critical fk, at which the 
airborne wavelength λB equals the length of the flexural 
wave λ

B

n [2] at 2a>>λB. Let us consider a problem in this 
approximation. 

Let us select the conditions for fastening of the end 
wall so as its flexure U(r, ϕ) is expressed in the form of  
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It is necessary to note that in our case it is possible to 
use Eq.6 practically at any method of fastening of the wall 
edges, since it has an effect on the form U(r, ϕ) only in the 
region of the first resonances, and they are placed 
significantly lower of the frequency range under study. In 
accordance with Eq.1 the sound field of radiation of wall 
Pref shall be written as  
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At z = 0. the boundary condition must be fulfilled  
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expressing the equation of displacements of particles and 
the plate. Here ρb is the air density. Substituting Eq.6, 7 in 
Eq.5, 4 and 8, we shall get 
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Making use of the second expression Eq. 9, we shall 
transform the first one to the form 
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In order to specify the unknown amplitude of 
vibrations Unk, it is necessary to represent the wave of 
excitation Pn in terms of series according to 
eigenfunctions: 
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where 
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Then, substituting Eq. 11 to Eq. 10, we shall get: 
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The sound pressure beyond the edge wall is given by 
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Sound insulation is defined as  
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Making use of Eq. 11 and 13, we shall obtain a 
formula for calculation of sound insulation: 
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As it is seen from the formula, the sound insulation 
depends on the conditions of excitation, i.e. on the 
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amplitude qnk in the series expansion of an incident sound 
wave in eigenfunctions. 

Practical special case of sound insulation of the 
end wall 

In this section we shall consider one more case that is 
found to approach practice more closely: the source is 
situated on the axis of a semicylinder. In this case the 
sound field is not dependent on the angle ϕ. This statement 
is also valid for any axially symmetric excitation. 

Then Eq. 14 will be written as 
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  (15) 
The point source is represented mathematically by the 

Dirac’s functions δ. In its series expansion in 
eigenfunctions of the boundary problem excitation 
amplitudes will be constant and equal each other. The 
sound insulation R in this case is equal to 

∑

∑

∞

=

∞

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+−−

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

=

0

2

2
2

44

4

2

2
2

0

0
0

21

2
lg10

k

k
b

b

u

kk
b

kb

k
k

a
kim

aka
kim

a
rJ

a
rJ

R

α

ραα

αρ

α

 (16) 

Inconvenience of calculation according to Eq. 14, 15 
and 16 lies in the dependence of the magnitude of sound 
insulation on the point coordinates, which the sound field 
is emitted. This difficulty can be avoided if to define the 

sound insulation of the end part by means of the relation of 
the energy of sound waves that passed through the end to 
the energy of an incident wave. 

The excitation wave Pn(r, ϕ, z) is written as 
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At axially symmetric excitation 
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The particle velocity component along the axis z 

 

.

11

2

2
2

2

2
2

0

z
a

ki
k

b

k
kk

b
n

b
z

k
b

e
a

k

a
rJq

z
p

i
v

⋅−
−

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

= ∑
α

α

α
ωρωρ

 (18) 

The flux of energy qz(r) along the axis z may be 
written as 

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛⋅

⎢
⎢
⎢
⎢

⎣

⎡

⋅⎟
⎠
⎞

⎜
⎝
⎛==

∑

∑

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

⋅−

n

z
a

ki
k

bkn
b

k

z
a

ki
kkznz

n
b

k
b

e
a

k
a
rJq

e
a
rJqvprq

*

2

2
2

2

2
2

*

2

2
2*

0
*

0
*

1

Re
2
1Re

2
1)(

α

α

α
α

ωρ

α

 (19) 

Here * denotes a complex-conjugate value. 
The total energy of a sound wave which is incident on 

the end is equal to: 
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Substituting here qz(r) from Eq. 19, we obtain: 
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Due to the orthogonality of the Bessel’s function the  
integral in Eq. 20 is equal to zero at k≠n. With k=n it 
equals to [4]: 
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By making use of this formula we shall write Eq. 20 in 
the form of 
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The summing up here is carried out by these values k, 
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root the real part of the expression Eq. 21 is equal to zero. 
At the selected frequency f in this case the following 
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The last value k, at which Eq. 22 is still valid, we shall 
denote through kr. 

In an analogous way the energy of the transmitted 
wave Qznp will also be written, only kq  will be 

substituted by 2
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Let us define the sound insulation of the end wall of a 

semicylinder as 
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With the point excitation of the amplitude 2
4q =const 

Eq. 24 transforms into: 
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If to take into account that 
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the real value, then the square of the modulus of an 
expression in the denominator is equal to: 
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and Eq. 25 will be equal to 
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The values of the roots αk are given in [4] (page 232). 
The first four roots equal to α0=0; α1=3,8317; α2=7,0156; 
α3=10,1735. It is possible to define the remaining roots 
with a precision sufficient for practice from the asymptotic 
Bessel’s function J1(-α)=0=cos(α-3π/4) from where 

⎟
⎠
⎞

⎜
⎝
⎛ +−=− πππα k

24
3  and 

 ( )14
4

+≈ kk
πα ,  

where k is the integer number.  
Thus, we have come to the formula convenient for 

calculation Eq. 13, which does not depend on the 
coordinate of the point of observation and amplitudes of 
excitation. Moreover, Rэ determines that part of energy, 
which passes through the edge. This characterizes in the 
best way its sound insulation in practice. 

Conclusions 
1. In solving this problem, certain difficulties have 

been encountered. 
2. To make its solution easier two assumptions were 

made:  
- boundary conditions of fastening of the end are 

chosen such that its eigenfunctions ψnm(r) according to the 
radius coincide with ψnm(r) of the housing;  

- the reaction of the outside air to the oscillations of 
the end wall is neglected. Both these assumptions may lead 
to the errors only in the area of the first resonances of the 
end. 

3. When considering particular cases, it was taken that 
under the housing the mode with amplitude qnk is excited, 
and the remaining are equal to zero. Then 
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This is a standard expression for the sound insulation 
of the plate. Let us transform it by introducing the 

designations: sinΘ=αnk/kba, where Θ is the angle between 
the direction of the propagation of a wave with the normal 
to the end of the housing (Fig. 2). 

 
 

Fig. 2. Calculation scheme 

4. The radial wave number in our case is equal to 

kr=αnk/a, the axial to Θ=−= cos22
brbz kkkk . With the 

account of this, Eq. 27 takes the form:  
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where fk is the frequency of coincidence (critical). Like in 
the plate of minimum sound insulation modes (n, k) will be 
at the angles of coincidence, when ffkk /sin =Θ . 

5. As a result Eq. 26, convenient for practical 
computations, was obtained. This formula does not depend 
on the coordinates of the point of observations and 
excitation amplitudes. In addition, the value Rэ defines that 
part of energy, which passes through the edge and 
characterizes in the best way its sound insulation in 
practice. 
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D. Gužas 

Pusiau cilindrinio gaubto galinių plokščių sienelių garso izoliacija 

Reziumė 

Praktikoje triukšmui mažinti taikomi pusiau cilindriniai gaubtai, 
kurių galuose įmontuojamos plokščios sienelės. Tirta, kokių savybių įgyja 
plokščia sienelė, įmontuota į pusiau cilindrinį gaubtą. Tyrinėjant sienelės 
garso izoliaciją priklausomai nuo triukšmo šaltinio padėties po gaubtu, 
buvo gautos praktinės reikšmės formulės, kurias galima naudoti 
projektuojamų gaubtų triukšmo mažinimo efektyvumui nustatyti. 
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