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Sound insulation of the plane end walls of a semicylindrical housing
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Abstract

In our previous work [1] a problem is solved for estimation of sound insulation R, — the lateral wall of the housing on condition
that edges are rigid and do not transmit the sound. This is not always accomplished in practice, therefore when designing a question
concerning the choice of the parameters of the ends so that they would not worsen R, comes into forth. In this paper a problem will be
considered on the sound insulation of an end wall by making a assumption that an end wall is rigid. In this work also a frequency case
will be considered when a point source is located on the axis of a semicylinder.

The problem is solved by series expansion of the sound pressure p; inside the housing and the flexural displacement of the wall u

in eigenfunctions of the boundary value problem.
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Introduction

When considering the sound insulation of different
machines and mechanisms (compressors, electric engines,
ventilators, ducts, etc.), it is recommended to use
semicylindrical housings [2].

Previously in our work [3] a problem was considered
on the sound insulation of walls of a semicylindrical
housing of the limited length. In it, however, the end walls
were taken as rigid.

It is of interest to define the sound insulation of end
walls and to compare it with the sound insulation of the
lateral ones. A problem is not simple, since it is difficult to
calculate the insulation of the end outside. As a result, we
shall consider a simplified model: a rigid semicylindrical
shell is placed on the rigid base so that its radial
displacement at » = a and azimuthal displacement at ¢=0
and =7 equal zero.

In the problem of a particular case, we shall solve the
sound insulation by means of expansion of the sound
pressure P; inside the housing and the flexure of the wall u
in eigenfunctions of the boundary value problem.

By satisfying the boundary functions a displacement of
the neutral surface or flexure of the wall u was defined at
the end.

General solution of a problem about the sound
insulation of end walls of a semicylindrical
housing

We shall consider the simplified model: a rigid
semicylindrical shell lies on the rigid base so that its radial
displacement at » = g and azimuthal displacement at ¢ =0
and o=n equal zero (see Fig. 1).

Fig. 1. Diagram of the arrangement of the coordinate axes
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In this case the sound pressure inside the shell will be
constituted of the waves of type

[ 2
- +i kg—anzk -z
F(r,go,z):Pnkcosn(p]n(ank—je a , ()
a

where J, is the Bessel’s function of # series, o, is the root
of a dispersion equation

Jn(ank):|:d;1]rn:| =0,

r=a

ky, = ©/c, is the wave number in air, signs + and — in the

exponential index denote waves travelling in the positive

and negative directions along the axis z. For simplicity, we

shall omit the time factor exp(-iat) here and further on.
This follows from the fact that F(r, ¢, z) satisfies

Helmholtz’s equation

AF(r,,2)+ K} F(r.0.2)=0, @)

(it is possible to make sure of this by simple substitution)
and the above-given boundary conditions.

We shall represent the sound pressure under the
housing in the form of three components: P, (7, ¢, z) is the
primary incident wave on the end wall; P, (r, @, z) is the
reflected wave from the end wall, if it is treated as
absolutely rigid and P,is the wave, reflected from the end
wall, which is related to its radiation inside the housing. At
z = 0, the first two components equal each other, i.e. P,(7,
o, 0)= P,(r, ¢ 0). Thus the sound pressure under the
housing will be

Pb(r’¢7>z):Pn(r’(oaz)+Pn(r’(oa_z)_Pref(”a(D’Z)- 3

An equation of flexural vibrations of the end wall of
the housing we shall write in the form of

BAAU(r,9)- 0*mU(r,p)= P, (r,0,0)- P.(r,0,0).  (4)

Here B =Eh>/ 12(1 - 0'2) is the flexural rigidity of the
wall; m=ph is its linear density; £, o and p — Young’s
module, Poisson’s ratio and density of material; % is the
wall thickness; u is the displacement of the neutral surface
of the wall; P, is the sound pressure, related to the wall
radiation outside. If the conditions of radiation of the end
wall inside and outside of the housing are the same, then
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P (v, ¢ 0) and P.(r, ¢ 0) would differ only by the sign,
and the right part of Eq.4 will be written as
P=ZPn(r,q),O)—ZP,,ef(r,(p,O). (5)

The solution of the problem in this case will be
simplified considerably. Correlation Eq.5 will take place at
the frequencies higher than the critical f;, at which the
airborne wavelength Ap equals the length of the flexural
wave A, [2] at 2a>>Ap. Let us consider a problem in this
approximation.

Let us select the conditions for fastening of the end
wall so as its flexure U(r, @) is expressed in the form of

Ulr,p)= ZUZk cosn(p]n(ank 2) (6)
nk

It is necessary to note that in our case it is possible to
use Eq.6 practically at any method of fastening of the wall
edges, since it has an effect on the form U(r, ¢) only in the
region of the first resonances, and they are placed
significantly lower of the frequency range under study. In
accordance with Eq.1 the sound field of radiation of wall
P,.sshall be written as

2
Pref (l”,%z) = ZPnk cosngl, (ank ;} a ()
n,k

At z = 0. the boundary condition must be fulfilled
1 OP -(r,q),z:O)
Ulr,p)=——5—2 , ®)
oz
expressing the equation of displacements of particles and

the plate. Here p, is the air density. Substituting Eq.6, 7 in
Eq.5, 4 and 8, we shall get

pba
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Making use of the second expression Eq. 9, we shall
transform the first one to the form

,oba)2

2
ik - %k
V 2

Ui cosnel, (ank LJ =2P, (r,go,O).
a

In order to specify the unknown amplitude of
vibrations Uy, it is necessary to represent the wave of
excitation P, in terms of series according to
eigenfunctions:

(10)
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where
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Then, substituting Eq. 11 to Eq. 10, we shall get:
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The sound pressure beyond the edge wall is given by
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Sound insulation is defined as
2
&= 101g/22{~20)
Fe (r > (0,0)

Making use of Eq. 11 and 13, we shall obtain a
formula for calculation of sound insulation:

r
Z%zk COS”Wn[ank .aj
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As it is seen from the formula, the sound insulation
depends on the conditions of excitation, ic. on the
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amplitude ¢, in the series expansion of an incident sound
wave in eigenfunctions.

Practical special case of sound insulation of the
end wall

In this section we shall consider one more case that is
found to approach practice more closely: the source is
situated on the axis of a semicylinder. In this case the
sound field is not dependent on the angle ¢. This statement
is also valid for any axially symmetric excitation.

Then Eq. 14 will be written as

R=10lg k=0
i 2qu0(0% j
k=0
2| 4
[24 (24
k2 - k| ey 20
a” | kja \/2 a]%
imq|k; ——%
b a2
(15)

The point source is represented mathematically by the
Dirac’s functions J. In its series expansion in
eigenfunctions of the boundary problem excitation
amplitudes will be constant and equal each other. The
sound insulation R in this case is equal to

R=10lg k=0
i 2pr0[0!1¢ j
k=0
| 2| 4
o a 2
im kg——lzc 4k4 -1+ Pb
a“ | k,a 5 a?
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Inconvenience of calculation according to Eq. 14, 15
and 16 lies in the dependence of the magnitude of sound
insulation on the point coordinates, which the sound field
is emitted. This difficulty can be avoided if to define the
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sound insulation of the end part by means of the relation of
the energy of sound waves that passed through the end to
the energy of an incident wave.

The excitation wave P,(r, ¢, z) is written as

o2
- ik} - "Zk -z
L0, Z)= cos ) — a .
Pn(r(PZ) zzan n@]n( nkaje
n k
At axially symmetric excitation
[ 2
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The particle velocity component along the axis z
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The flux of energy g¢.(r) along the axis z may be
written as

(18)

i kz—ﬁz
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2 *
! o2 l[kg—a’z’] z
* 3k 2 k a
yifa e
Pb » a
(19)

Here * denotes a complex-conjugate value.
The total energy of a sound wave which is incident on
the end is equal to:

0. = [4(r)-war.
0

Substituting here ¢.(7) from Eq. 19, we obtain:
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Q0 =-Re -—qukqne
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Due to the orthogonality of the Bessel’s function the
integral in Eq. 20 is equal to zero at k=n. With k=n it
equals to [4]:

[~ [ o]
0

From the boundary conditions J(') —J1 =0 and the

second member on the right side is equal to zero.
The integral

a a2
£=7J§(ak)-

By making use of this formula we shall write Eq. 20 in
the form of

*
2 2
a‘r 2 2 9 2
= R - . (21
0: =5 Re §k G o [ Jolm)) e

The summing up here is carried out by these values £,

2
} a
in which kg ——]2‘ will be valid, since at an imaginary
a

root the real part of the expression Eq. 21 is equal to zero.
At the selected frequency f in this case the following
condition should be satisfied

27fa

¢h

kpa > ak or >ay (22)

The last value £, at which Eq. 22 is still valid, we shall
denote through £,.
In an analogous way the energy of the transmitted

wave 0., will also be written, only |qk| will be

substituted by pl%‘:
2 k, 2
2| 2 %k |2
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Let us define the sound insulation of the end wall of a
semicylinder as
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With the point excitation of the amplitude |q4|2 =const

Eq. 24 transforms into:
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2
/ a
If to take into account that kg ——]; in Eq. 25 has
a

the real value, then the square of the modulus of an
expression in the denominator is equal to:

2
at 4,02
k —1 +—b
k3a4 a?
m? kg ——]2{
a

and Eq. 25 will be equal to
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The values of the roots ¢ are given in [4] (page 232).
The first four roots equal to 0=0; 0;=3,8317; a,=7,0156;
a;3;=10,1735. It is possible to define the remaining roots
with a precision sufficient for practice from the asymptotic

Bessel’s function J;(-a)=0=cos(a-3n/4) from where
3z (—z—kkﬂj and
4 2

a z%(4k+l),

where £ is the integer number.

Thus, we have come to the formula convenient for
calculation Eq. 13, which does not depend on the
coordinate of the point of observation and amplitudes of
excitation. Moreover, R, determines that part of energy,
which passes through the edge. This characterizes in the
best way its sound insulation in practice.

Conclusions

1. In solving this problem, certain difficulties have
been encountered.

2. To make its solution easier two assumptions were
made:

- boundary conditions of fastening of the end are
chosen such that its eigenfunctions ,,(7) according to the
radius coincide with ;,,,(r) of the housing;

- the reaction of the outside air to the oscillations of
the end wall is neglected. Both these assumptions may lead
to the errors only in the area of the first resonances of the
end.

3. When considering particular cases, it was taken that
under the housing the mode with amplitude ¢, is excited,
and the remaining are equal to zero. Then

3 2
o
im kg— ”zk o
Ry =101gll + a 4”k4 -1 Q7
2pp kpa

This is a standard expression for the sound insulation
of the plate. Let us transform it by introducing the
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designations: sin@=a,/kya, where @ is the angle between
the direction of the propagation of a wave with the normal
to the end of the housing (Fig. 2).

Fig. 2. Calculation scheme

4. The radial wave number in our case is equal to

k.=o,u/a, the axial to k, = ,lkg —kr2 =kp cos® . With the

account of this, Eq. 27 takes the form:
2
iom f 2 4
3 cos® 1——2$1n O, (28
PbCh o
where f; is the frequency of coincidence (critical). Like in
the plate of minimum sound insulation modes (, k) will be

at the angles of coincidence, when sin®y =/ f; / f .

5. As a result Eq. 26, convenient for practical
computations, was obtained. This formula does not depend
on the coordinates of the point of observations and
excitation amplitudes. In addition, the value R, defines that
part of energy, which passes through the edge and
characterizes in the best way its sound insulation in
practice.

Ry =101g]l -
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Pusiau cilindrinio gaubto galiniy ploks¢iy sieneliy garso izoliacija
Reziumée

Praktikoje triukSmui mazinti taikomi pusiau cilindriniai gaubtai,
kuriy galuose imontuojamos plokscios sienelés. Tirta, kokiy savybiy igyja
ploks¢ia sienelé, imontuota | pusiau cilindrinj gaubta. Tyrinéjant sienelés
garso izoliacija priklausomai nuo triuk§mo Saltinio padéties po gaubtu,
buvo gautos praktinés reikSmés formulés, kurias galima naudoti
projektuojamy gaubty triuk§mo mazinimo efektyvumui nustatyti.

Pateikta spaudai 2007 06 18
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