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Abstract: 

Objective of this study was to develop an acoustic computer model, which would enable to calculate the signals reflected by 
triangles arbitrally oriented in space. Modelling of 3D reflections from triangles using the Huygens approach was performed. The 
rotation of the triangle in such a way, that after the turn the triangle would be located in one plane allowed to reduce the amount of data 
and, consequently, to increase the speed of calculations. Modelling was performed at different triangle angles with respect to a 
transducer. The performed simulations show, that the triangle as a shape can be recognized only in the case of a specular reflection. 
Keywords: 3D modelling, ultrasonic, Huygens. 
 
Introduction 

Often one of the ways to solve complicated inspection 
tasks is to develop the acoustic computer model, which 
enables to simulate propagation of ultrasound in different 
media and to calculate the signals reflected by the objects, 
having a complicated structure. Several modelling 
approaches for approximation of objects through the series 
of different facets (rectangular, circular and triangular) are 
available [1-3]. 

Different shapes can be described by subdividing the 
object into a large number of rectangular facets [1]. The 
facets are described by centre of the facet, the outward 
normal to the facet, the area of the facet and the length 
vectors of the two sides of the facet. Scattering from all 
illuminated facets are summed coherently to get the net 
scattered pressure [1]. 

3D objects can be represented by densely packed 
surfaces of facets that are small compared to the 
wavelength [2]. The coordinates and the surface normal of 
the facets are computed and stored. To model 3D objects 
basic shapes like the sphere, cylinder and cone are 
superimposed. The basic building block of these shapes is 
the circle. The object surface is constructed by stacking 
circles with an appropriate radius one behind other. The 
insonified facets are computed by selecting facets whose 
surface normal have a positive component towards the 
sonar view point. It is assumed that the energy propagates 
along straight ray paths [2]. 

The surface of the 3D object also can be represented 
by plane triangular facets [3]. Each facet in the three-
dimensional space is represented by its vertex points and 
the unit surface normal vector pointing out of the body [3].  

For the approximation of inspected objects plane 
triangular facets were selected, because in a widely used 
CAD model all surfaces are given in terms of triangles. 
Also the plane triangular facet is suited for approximation 
of all types of surfaces because of its co-planar 
property [3]. 

The main objective of the developed acoustic model is 
to calculate ultrasonic signals reflected by the components 
of a complicated geometry, approximated by triangles, 
taking into account position, orientation and parameters of 
the ultrasonic transmitters and receivers. Ultrasonic 

transducers in most cases operate in a far field zone. In this 
zone the diffraction effects caused by the geometry of the 
transducer are very low and can be neglected. Therefore 
for the selected space point the pulse response of the 
transducer can be simplified up to two parameters: the 
signal delay time and the signal amplitude. The reflected 
signal according to this approach is calculated as a sum of 
the signals reflected by elementary segments of the 
reflecting surface - a part of the triangle which is in the 
intersection zone of the directivity patterns of the 
transmitter and the receiver. 

Main steps of the proposed method 
In the used model it is assumed that a triangle is 

arbitrally oriented in space (Fig. 1). The calculations in 3D 
space are very complicated and require a lot of computer 
resources, therefore the triangle plane is rotated in a space 
in such a way, that after the turn the triangle would be 
located in one plane (z=0) and all calculations could be 
performed in 2D space. Then the amount of the data is 
reduced, and, consequently, the speed of calculations is 
increased a lot. The transmitter and receiver are rotated 
also – that means, that the position of transmitter and 
receiver according to the triangle plane remains 
unchanged, only all together are rotated in such a way that 
the triangle would be located in one plane. 

The modelling of 3D reflections from triangles using 
the Huygens approach consists of the following steps: 
• The triangle is moved to the origin of the coordinate 

system; 
• The triangle is rotated in such a way, that after the 

rotation the triangle would be located in one plane 
(z=0); 

• The transmitter and receiver are translated and rotated 
in the same way in order to keep the position of the 
transducers unchanged with respect to the triangle 
plane; 

• The zone of the triangle which is completely in the 
intersection zone of the directivity patterns of the 
transmitter and receiver is found; 

• This triangle zone is divided into elementary segments 
with a step, which is smaller than the half of the 
wavelength;
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Fig. 1. Geometry of the problem 

• The distance between these elementary segments and 
the transducer centre is calculated; 

• The amplitude taking into account the directivity 
pattern, the distance and the delay time of the signal 
propagating from the transmitter to each of the 
elementary segments is calculated; 

• Each of elementary segments is assumed to be a new 
source of ultrasonic waves and the distances from them 
to the receiver are calculated; 

• The received signal is calculated using integration and 
convolution. 

Calculation of 3D reflections form triangles 

Definition of a triangle position in space 

For a definition of a triangle position in space the 
coefficients of the plane, where a triangle is located, are 
determined: 
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where x1, y1, z1 are the coordinates of the first vertex of the 
triangle, x2, y2, z2 are the coordinates of the second vertex 
of the triangle, x3, y3, z3 are the coordinates of the third 
vertex of the triangle, Atr, BBtr, Ctr, Dtr are the coefficients of 
the triangle plane, which can be described by the following 
equation: 

 0=+++ trtrtrtr DzCyBxA . (2) 
The angle of the triangle plane with respect to the z=0 

plane has to be found. The angle between two planes 
01111 =+++ DzCyBxA and 02222 =+++ DzCyBxA  can 

be determined using the following equation: 
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In this case the coefficients of the triangle plane are 
trAA =1 , trBB =1 , trCC =1 ,  and the coefficients 

of the z=0 plane are 
trDD =1

02 =A , , , 02 =B 12 =C 02 =D . So, 
the triangle plane angle with respect to the z=0 plane is 
given by:  
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Translation of the triangle 
The first vertex of the triangle is moved to the origin 

(translation) of the coordinate system. For the translation a 
4x4matrix is used. The position vector p1 is composed as 
follows (with x1, y1, z1 corresponding to the position of the 
first vertex of the triangle in 3D space): 
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The translation matrix T is as follows (dx, dy, dz are the 
translation distances along each axis): 
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The result – the translation of the first vertex of the 
triangle to the origin is given by: 
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Other vertexes of the triangle are translated also: 
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where xn, yn, zn are the coordinates of the n-th vertex of the 
triangle in 3D space, xnm, ynm, znm are the coordinates of the 
n-th vertex of the triangle in 3D space after translation. 

Rotation of a triangle 
The plane of the triangle is rotated around the line, 

which is on the intersection of the triangle plane and z=0 
plane. First of all the directive coefficients of the line on 
the intersection of the triangle plane and z=0 plane have to 
be found. The equation of the line in 3D can be written as 
the intersection of the two planes: 
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The directive coefficients of this line can be determined 
using the following equations: 
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In this case the coefficients of the triangle plane are 
, , ,  and the coefficients 

of the z=0 plane are , , , 
trAA =1 trBB =1 trCC =1 trDD =1

02 =A 02 =B 12 =C 02 =D . So, 
the directive coefficients of the line on the intersection of 
the triangle plane and z=0 plane are: 
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The unit vector of the same line can be expressed as: 
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The rotation matrix is given by: 
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The rotation matrix is multiplied by the position vector, 
which in this case is given by the coordinates of the n-th 
triangle vertex: 
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Multiplication of matrices yields: 
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The coordinates of the vertexes of the rotated triangle 
are as follows: 
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The coefficients of the rotated triangle plane are given 
by: 
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where xr1, yr1, zr1 are the coordinates of the first vertex of 
the rotated triangle, xr2, yr2, zr2 are the coordinates of the 
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second vertex of the rotated triangle, xr3, yr3, zr3 are the 
coordinates of the third vertex of the rotated triangle and 
Artr, BBrtr, Crtr, Drtr are the coefficients of the rotated triangle 
plane, which can be described by the following equation: 

 0=+++ rtrrtrrtrrtr DzCyBxA .  (18) 

Division of the triangle into elementary segments 
For each triangle 2D area, in which the given triangle is 

placed, has to be determined. This 2D area is divided into 
the elements with a step, which is less then the half 
wavelength. First of all the approximate step is calculated: 

 2/λ=Δd . (19) 
Then the number of elements in x and y directions is 

calculated: 
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where xmax, xmin, ymax, ymin define the 2D area, where 
triangle is located. 

Translation and rotation of the transducer 
The transducers (transmitters and receivers) are 

translated at the same distance as the triangle in order to 
keep the position of the transducer according to the triangle 
plane unchanged: 
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where xt, yt, zt correspond to the position of the 
transducer centre in 3D space, xtm, ytm, ztm correspond to the 
position of the translated transducer centre in 3D space. 

Then the coordinates of the transducers are calculated 
in the rotated coordinate system. The same rotation matrix 
as before is used. The rotation matrix is multiplied by the 
position vector, which in this case is given by the 
coordinates of the transducer centre: 
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The coefficients of the rotated transducer plane are 
determined rotating the normal vectors of the transducers: 
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The coefficients of the rotated transducer plane are as 
follows: 
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where xrt, yrt, zrt are the coordinates of the rotated 
transducer centre and Art, BBrt, Crt, Drt are the coefficients of 
the rotated transducer plane, which can be described by the 
following equation: 

 0=+++ rtrtrtrt DzCyBxA . (25) 

Determination of elements of a triangle covered by the 
directivity pattern of a transducer  

Now it has to be found which points of the triangle 
plane are covered by the directivity pattern of each 
transducer. First, the distance from the points in the 
triangle plane to the centre of the transducer is calculated 

 ( ) ( ) ( )222
1 elrtelrtelrt zzyyxxd −+−+−= , (26) 

where xrt, yrt, zrt are coordinates of the transducer centre, 
xel, yel, zel are the coordinates of the elementary segment in 
the triangle plane (Fig. 1). 

Then the distance from the plane of the triangle to the 
plane of the transducer as a normal is calculated: 
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where Art, BBrt, Crt, Drt are the coefficients of the rotated 
transducer plane 0=+++ rtrtrtrt DzCyBxA . 

The distance from the transducer centre to the point, 
where the normal from the triangle plane hits the 
transducer plane is calculated: 

 2
2

2
13 ddd −= . (28) 

The signal amplitude in each point of the triangle plane 
according to the directivity pattern of the transducer is 
found: 

 ( )( )22exp adirKA α⋅= , (29) 

where ( ) 25.0log rdirK α= ; ( 23arctan dda = )α  is the 
angle from the transducer axis, αr is the limiting angle of 
the transducer. 

The signal propagation time from the transmitter to the 
elementary segment in the triangle and to the receiver is 
calculated, because all elements are assumed to be the 
sources of ultrasonic waves: 

 
c

ddt eret += , (30) 

where det is the distance from the elementary segment 
in the triangle plane to the centre of the transmitter, der is 
the distance from the elementary segment in the triangle 
plane to the centre of the receiver, c is the ultrasound 
velocity. 

Calculation of the received signals  
As it was described above, the triangle is decomposed 

into elementary segments and the delay time and the 
amplitude of the signals reflected by these segments are 
calculated. So, the pulse respon e of the object is presented 
as the set of pairs 
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where  and  are the amplitude and the delay time of 
the signal reflected by k-th segment correspondingly, 
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According to the Huygens’s principle the total 
reflected signal can be expressed as the sum of reflections 
from the elementary segments as 
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where the ut(t) is the transmitted ultrasonic signal  is 
the pulse response of k-th elementary segment, ⊗ denotes 
convolution.  
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The transmitted signal, which has a shape of a high 
frequency pulse with the Gaussian envelope, was 
approximated by: 
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periods, ka is the asymmetry factor,  f is the frequency.  

Modelling of 3D reflections from triangle at 
different angles 

In order to test the developed model, simulation of 
ultrasonic signals reflected by a triangle immersed in water 
was carried out. The geometry of the triangle is given in 
Fig. 2. The simulation was performed using the single 5 
MHz ultrasonic transducer, operating in a pulse-echo 
mode. The transducer was at 300 mm from the object. The 
transducer was consequently shifted in a plane 
(z=300 mm), and the simulated reflected signals in the time 
domain were used to construct a C-scan type image of the 
triangle. The scanning step was 0.5 mm.  
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Fig. 2. Geometry of the simulated triangle 

Modelling of the 3D reflections form the triangle was 
performed in the case when an ultrasonic beam is reflected 
by a planar surface and by triangles, reflecting surfaces of 
which are inclined with respect to the symmetry axis of the 
directivity pattern, therefore the signals which are picked 
up are not specularly reflected by the object. For this 
purpose the single triangle was rotated around the longest 
leg (Fig.3). 

The simulated ultrasonic images of the triangle 
reflector obtained under different orientation angles are 

presented in Fig. 4 - 9. It is necessary to take into account 
that the true value of the maximal amplitude in each image 
differs essentially. In all images the presented amplitudes 
are normalized with respect to the maximal amplitude. 

   
a  b 

Fig. 3. Rotation of the single triangle around the longest leg  
a – specular reflection, b – inclined reflection 

The following conclusions can be made from the 
presented images: 
• A triangle reflector as such can be recognized only 

under angles close to perpendicular to the triangle 
surface; 

• The edges of the triangle can be seen when they are 
parallel to the transducer surface – the longest leg in 
Fig.4-9. 

 

 

y, mm

x, mm
Fig.4. The simulated C-scan image of the triangle at the angle 0° 

 

y, mm

x, mm

Fig.5. The simulated C-scan image of the triangle at the angle 1° 
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Fig.6. The simulated C-scan image of the triangle at the angle 2° 

 
Fig.7. The simulated C-scan image of the triangle at the angle 3° 

 
Fig.8. The simulated C-scan image of the triangle at the angle 4° 

 

y, mm

Fig.9. The simulated C-scan image of the triangle at the angle 5° 

Conclusions 
The developed acoustic model enables to calculate the 

signals reflected by triangles in 3D space using the 
Huygens approach. The rotation of the triangle in such a 
way, that after the turn the triangle would be located in one 
plane allowed to reduce the amount of data and, 
consequently, to increase the speed of calculations. The 
simulations of the 3D reflections from triangle at different 
angles show, that a triangle as a shape can be recognised 
only in the case of the specular reflection. The edges of the 
triangle can be seen when they are parallel to the 
transducer surface. 
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E. Jasiūnienė 

Atspindžių nuo trikampių modeliavimas trimatėje erdvėje naudojant 
Hiuigenso principą 

Reziumė 

Šio darbo tikslas buvo sukurti tokį akustinį kompiuterinį modelį, 
kuris leistų modeliuoti ultragarso signalo atspindžius nuo bet kaip 
orientuotų trikampių trimatėje erdvėje. Trikampio pasukimas taip, kad šis 
atsirastų z=0 plokštumoje, leido sumažinti duomenų kiekį ir kartu 
padidinti skaičiavimų spartą. Atspindžių nuo trikampio modeliavimas 
esant įvairiems jo pasukimo kampams parodė, kad trikampio forma gali 
būti atpažinta, tik kai trikampio plokštuma yra lygiagreti su keitiklio 
plokštuma. Be to, matomos tik tos trikampio kraštinės, kurios yra 
lygiagrečios su keitiklio plokštuma. 
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