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Abstract 

The analytical methods for computation of sound insulation of multi-layer cylindrical constructions are formulated in the paper. 
The relationship between multi-layer and one-layer constructions is specified. With the use of analytical methods described in the paper, 
sound insulation of one-layer and multi-layer constructions was computed.  

The results obtained showed that sound insulation of a one-layer construction of the same thickness was by two orders less in 
comparison with the sound insulation of multi-layer construction.   
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Introduction 

It has been already known from the literature that 
sound insulation of the walls of cylindrical surface of the 
construction (shell) differs from the frequency 
characteristic of sound insulation of the boards [1 - 4]. 
Difference is important due to the fact that surfaces of 
cylindrical shape insulate considerably better the low-
frequency sound than the board from the same material. 
That anomaly of sound insulation focused the attention of 
scientists to the use of that property for abatement of a 
low-frequency noise.  

At present, the multi-layer constructions from polymer 
structures became widespread as efficient means for vibro- 
and sound insulation [5, 6]. Moreover, special attention is 
devoted to multi-layer polymer cylindrical shells. 
However, the solution of elastoacoustic problems of 
dynamics of polymer cylindrical shells is related with great 
mathematical difficulties. In the present work estimation is 
made of the sound insulation of a multi-layer polymer 
cylindrical structure on the basis of the approximated 
Helmholtz equation with variable coefficients, 
characterizing the properties of a multi-layer construction.  

Theory 
We shall study the acoustic field in the area, limited by 

two infinite coaxial direct circular cylinders 
).,0;( 21 ∞+∞−≤≤ zRrR ppp πϕ  (Fig. 1). Pressure P 

inside that inhomogeneous area satisfies a wave equation: 
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Fig. 1. Computation model of sound insulation 

We shall search for equation solution in the form 
 ( ) ( ) tierutrP ωϕϕ ⋅= ,,, . (2) 
Substituting Eq.2 into Eq.1, we get 
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We assume that q = q (r, ϕ) is a slowly changing 

function in the sense that 1pp
q
q∇ . 

Let’s study the inhomogeneous Helmholtz equation 
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Assuming that the right side is represented by the 

Fourier series 
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We shall search for a solution of Eq. 5 in term of  
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where un(r) satisfies the following ordinary differential 
equation 
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Let us write the general solution of the one-layer 
equation Eq. 8, in the form 
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where An and BBn are arbitrary constants. 
The general solution of the inhomogeneous Eq. 8 may 

be found, for example, by the method of variation of 
arbitrary constants. Setting the boundary conditions on 
circles 1Rr =  and 2Rr = , it is possible to define the 
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constants  and  from Eq. 9. Here, the boundary 
conditions are determined by an external acoustic field. 
After finding  and , Eq. 9 determines fully the 
acoustic field inside the construction under a study. 

nA nB

nA nB

As a simplified example of the described methods we 
shall study a two-layer construction, described on the basis 
of the Helmholtz equations with piecewise –constant 
coefficients, characterizing the properties of each of the 
layers. 

Suppose, we have a direct circular cylinder 
),20;0( 1 ∞+<∞−≤≤≤ zRr πϕp , filled with the 

medium with the acoustic resistance . It is encircled 
by two protective cylindrical layers 

11cρ

+∞∞−≤≤ pppp zRrR ;20;( 21 πϕ  and  
),20,32 +∞∞−≤≤ pppp zRrR πϕ  with the acoustic 

resistances that are equal correspondingly to 22cρ  and 
. Let us write the potential of velocities 33cρ

( )tzW j ,,,ϕρ ,  in the indicated three media. 
In each of them it satisfies the wave equation: 
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Let us set on the external surface (r=R3) of the 
construction under study the normal velocity component 
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Then the potential of velocities does not depend on z 
(the planar problem) 
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and we shall search for its peak value in the form 
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The functions uj(r,ϕ) satisfy in the corresponding areas 

the Helmholtz equation with the wave numbers 
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On the boundary circles the following conditions 
should be met  
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The solution of Eq. 14 for each of harmonics is written 
in the cylindrical functions 

 ( ) ( ) ( ) ( 3,2,1, =+= jrkYBrkJAru jnjnjnjnjn ) . (16) 
Substituting Eq.16 into the boundary conditions Eq.15, 

we’ll get the system of algebraic equations with respect to 

the constants Ajn and BBjn. Solving it, we have for the 
amplitude of the potential in the small circle (0≤r≤R1) 
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( )3,2,11, =υ . Now let us suppose that the protection rings 
πϕ 20,, 3221 ppppp ≤RrRRrR , separating the 

small circle πϕ 20,0 1 pp ≤≤ Rr from the external 
acoustic field are absent and the circle r=R1 gets excited by 
the external acoustic field with the radial velocity 
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Let ( )ϕ,*
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*
1 ruu =  is the amplitude of the potential of 

the velocities of the acoustic field of the small circle. Then 
( )ϕ,*

1 ru  is the solution of the following Neumann 
problem: 
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Let us suppose that , 
then 
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Let us compute the mean square pressure per unit of 
the surface of the small circle („norm“) 
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The analogous value for the unprotected circle has the 
form 
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For verification of the proposed methods for 
computation of the sound insulation of the construction 
described, a study was made of the practically used 
thermal sound insulation material.  

The computations performed showed that from the 
selected materials in the example, the highest effect was 
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received after investigating the cylindrical layered 
construction. 

Computing the construction from the uniform material 
but with the same thickness of walls as from layered 
material (from different materials) we get the sound 
insulation which was by two orders less.  

Conclusion 
For improving the sound insulation of the walls of 

cylindrical constructions, it is recommended to apply a 
two-layer or multi-layer construction from different 
materials. 

The obtained interrelations of the layered cylindrical 
construction may be used in computing their sound 
permeability through the walls of the cylindrical shell. The 
composite layers of the construction may be not only the 
solid bodies (materials), but also fluid bodies (fluid 
materials). As an example, we may indicate the following 
materials: rubber with various specifications; some soft 
plastic and polymer materials and mastics (caouchouc, 
glycerin), etc. 

Thus, the elaborated methods make it possible to 
estimate the protective acoustic properties of a multi-layer 
cylindrical structure at the preset external and internal 
radius of construction and, on the contrary, at the required 
protective characteristics to find the necessary layered 
material and the order of their arrangement.  
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D. Gužas 

Daugiasluoksnės cilindrinės konstrukcijos garso izoliacija 

Reziumė 

Suformuluota analitinė metodika daugiasluoksnių cilindrinių 
konstrukcijų garso izoliacijai apskaičiuoti. Nustatytas ryšys tarp 
daugiasluoksnės ir vienasluoksnės konstrukcijos. Naudojantis minėta 
analitine metodika apskaičiuota vienasluoksnių ir daugiasluoksnių 
cilindrinių konstrukcijų garso izoliacija. Tyrimų rezultatai parodė, kad 
tokio pat storio vienasluoksnės konstrukcijos garso izoliacija dviem 
eilėmis mažesnė už daugiasluoksnės konstrukcijos garso izoliaciją. 
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