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Abstract 

The accuracy of the time delay estimation using the direct correlation technique has been theoretically calculated.  
The random errors of the time delay estimation in digital ultrasonic measurement systems have been studied. The techniques for the time-of-

flight (ToF) estimation have been discussed. The theoretical equations for analog and discrete case are presented. Numerical simulation has been carried 
out. The ToF estimation was performed using the direct correlation technique. Numerical simulation analyzed the influence of additive white Gaussian 
noise power spectral density, ultrasonic signal bandwidth, carrier frequency, analog-to-digital converter sampling frequency and resolution.  
Keywords: Ultrasonic measurements, time-of-flight estimation, data acquisition, acoustic signal processing. 
 
 

Introduction 
The time-of-flight (ToF) estimation is quite recent task 

in ultrasonic measurements. The ToF is the time needed 
for an ultrasonic wave to travel a certain distance. For 
instance from a transmitter to a target and then, after 
reflection, back to the receiver located near the transmitter 
[1, 2]. Usually ratio frequency (RF) pulse is used for that 
purpose.  

In simple applications, where accuracy is not an issue 
the ToF is computed using the threshold method: the echo 
signal arrival time is assigned at certain amplitude level 
crossing. This technique is so simple that only analog 
comparator and counter are sufficient to get reasonable 
results. There is a variety of specialized sensors for time 
interval to code conversion. For instance, TDC-GP1 offers 
2 measuring channels with 250 ps resolution each and a 
basic measurement range of 15 bit [3]. The threshold 
technique offers a low cost and simple solution, but suffers 
from poor accuracy: the measured time delay depends on 
the intensity of the echoes, or rather, on the object's nature, 
size, and distance from the transducer [1, 4, 5].  

The more complex signal processing techniques can be 
applied in order to get much higher accuracy [6-8]. Signal 
has to be converted to a digital form in order to apply the 
digital signal processing.  

The digitization of the ultrasonic signals is offering a 
flexible signal processing. A big variety of processing 
techniques can be applied. The digitization parameters are 
important during such systems design [9]. The designers 
usually do not address this problem properly. Typically 
sampling frequency and resolution are chosen “as high as 
possible”, but such approach will raise the system costs. 
So, it is preferred to have a lower sampling frequency, 
window size and resolution of analog-to-digit converter 
(ADC). Some publications analyze the choice of sampling 
parameters [10, 11]. However, in many publications the 
signal often is treated as a continuous wave (CW). The 
ultrasonic ToF estimation frequently uses a pulse signal. 
The task of this article is to determine the theoretical ToF 
estimation accuracy for digital ultrasonic systems using 
pulse signals. This paper is presenting the results of carried 
out investigation. 

The ToF measurement methods 
The ultrasonic system is using the ToF for a distance 

estimation. The distance can be estimated as: 

 ( )
2

ToFvl = , (1) 

where v represents the sound propagation velocity, ToF is 
the delay time. It can be seen that the range of the 
measurement accuracy depends on the ToF and the sound 
velocity v accuracy. We shall concentrate on the ToF 
estimation accuracy. The complex digital signal processing 
is assumed to be used for the ToF estimation. 

The echo received signal sR(t) can be treated as a 
delayed and attenuated version of the transmitted signal 
sT(t) with an additive white noise added: 

 ( ) )(ToF)()( tntstAts TR +−⋅= , (2) 
where A(t) is the attenuation function and n(t) is an 
additive white Gaussian noise (AWGN) with the power 
spectral density N0. Additionally it is assumed that the 
noise signal is not correlated with the signal. The AWGN 
power spectral density No can be obtained from the noise 
waveform standard deviation in the time domain and the 
bandwidth B ratio: 

 ( )[ ]
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The problem of the ToF estimation is to find an 
estimate of the true position of the signal arrival using the 
noisy received signal. Three ToF estimation techniques 
have been indicated in [1, 5, 12]: the direct correlation 
maximization, the L2 norm minimization and the L1 norm 
minimization. 

The direct correlation technique is using position of 
the peak of the cross-correlation function RDC as the signal 
arrival position (so the ToF) estimate: 

 [ ])(maxarg τDCDC RToF = , (4) 
where RDC is: 

 ( ) ( ) ( )dttstsR RTDC ττ −⋅= ∫
∞

∞−

. (5) 

The L2-norm minimization technique or average 
square difference function estimator is using the position 
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where L2-norm of the received signal and the reference 
signal is minimal: 

 ( )[ ]{ }τ2minarg2 LToFL = , (6) 
where L2 is: 

 ( ) ( ) ( )[ ]∫
∞

∞−

−−= dttstsL TR
22 ττ . (7) 

The L1-norm or average magnitude difference 
function is using the position where the L1-norm of 
received signal and the reference signal is minimal: 

 ( )[ ]{ }τ1minarg1 LToFL = , (8) 
where L1 is: 

 ( ) ( ) ( )∫
∞

∞−

−−= dttstsL TR ττ1 .  (9) 

The direct correlation technique possesses the optimal 
filter properties and broad theoretical analysis is done on 
the ToF estimation variance [1, 5, 13-15]. Therefore, it has 
been chosen for this analysis. The variance of the ToF 
standard deviation is given by [14]: 

 ( )

0
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EF
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e

≥σ . (10) 

where E is the signal sT(t) energy, Fe is the effective 
bandwidth of the signal. The signal energy can be 
calculated either using signal temporal presentation or the 
signal spectral density (SSD) S(f): 
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The effective bandwidth of the ultrasonic RF signal 
can be calculated as [14]: 

( ) ( ) ( )

2

2
222

2

2

2

2

E

dffSf

E

dffSf

Fe

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+=
∫∫
∞

∞−

∞

∞−

ππ

. (12) 

The equations presented above are dealing with analog 
signals. The conversion of these equations into a discrete 
form is needed. The transformations of the analog signal 
occurring due to sampling effect are discussed in the next 
chapter.  

The digitization process 
The analog signal s(t) sampling with the period Ts can 

be presented as multiplication of an analog signal s(t) with 
a delta impulse train [16] termed as a shah function III or 
Dirac comb:  

 ( )ss TttsnTx ,III)()( ⋅= . (13) 
The shah function is a periodic Schwartz distribution 

constructed from the Dirac delta functions δ(t): 

 ( ) ( )∑
∞

−∞=

−=
k

ss kTtTt δ,III . (14) 

The Fourier transform of this function is also shah 
function. If multiplication in the time domain corresponds 
to convolution in the frequency domain, then the sampled 

signal spectrum will be periodical with a period of the 
sampling frequency fs. The aliasing will occur for any 
frequency component (both signal and noise) falling 
outside the fs/2. For baseband signals the region between 
zero and the fs/2 is addressed as the Nyquist zone. For this 
reason the antialiasing filter is used in almost all ADC 
applications [9]. The filter passband with the maximum 
cut-off frequency fa should not corrupt the signal being 
recorded. The stopband attenuation at frequencies fs - fa has 
to be equal to the dynamic range (DR) of the signal (refer 
to Fig.1). 

fsfs/20

fa fs - fa

DR

 
Fig 1. Anti-aliasing filter requirements 

The DR usually is defined as CW signal RMS level 
ERX and the total noise RMS level’s Entot ratio at the input 
ADC: 

 ⎟⎟
⎠
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ntot
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E
E

DR lg20 . (15) 

The ERX is calculated using the ADC analog signal 
input swing VADCp-p: 

 
22

pADCp
RX

V
E −

= . (16) 

The ADC quantization noise is calculated by using the 
quantization step q which in turn is obtained from the ADC 
resolution b in bits and the analog signal input swing 
VADCp-p: 

 
12212 N

pADCp
nADC

Vq
E −

== . (17) 

The total noise level is taking into account both the 
ADC quantization noise EnADC and the amplifier intrinsic 
noise EnAMP: 

 22
nAMPnADCtotn EEE += . (18) 

Amplifier intrinsic noise is calculated by integrating 
the noise density en over the passband frequency range: 

 ∫=
af

nnAMP dfeE
0

2 . (19) 

The analysis of the ultrasonic preamplifier noise model 
and the total noise calculations can be found in [17]. 

The ToF accuracy estimation for digital signal 
Variety of publications use the numerical simulation to 

verify the improved ToF estimation techniques [1, 5-7]. 
Signal is sampled as given by Eq. 13 and the discrete 
cross-correlation is calculated: 

 [ ]{ }kDCM maxarg= , (20) 
where 
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where rxn and txn are the discrete arrays obtained after 
signal sampling for received and transmitted (reference) 
signals respectively. The ToF estimator then will have 
some granularity defined by the sampling frequency fs. The 
ToF precision will be significantly influenced by choice of 
the sampling frequency. Increase of the sampling 
frequency will increase the system cost and the processing 
time. For significant SNR the accuracy can be increased by 
a parabolic interpolation technique [18] or combination of 
the Hilbert transform and the linear interpolation [19]. 
More advanced interpolation techniques can be found in 
[6]. The parabolic approximation:  

 2
210

# )()( τττ aaaRDC ++= , (22) 

is using the sample of a maximum amplitude and the two 
samples surrounding it (Fig.2).  

Estimated peak

M-1

M+1

M

 
Fig. 2. The parabolic interpolation for TOF estimation 

 
The positions M-1, M and M+1 that are used can be 

solved to find the parabolic equation for apex: 
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The parabolic interpolation has been chosen for further 
investigation thanks to simplicity of this technique.  

We suggest using the digital signal record to estimate 
the ToF variance. For such purpose analytical Eq. 3, 10, 11 
and 12 have to be adopted for a discrete signal nature. The 
N0

# is calculated using the Nyquist frequency and the noise 
standard deviation σ#: 

 ( )
2/

2#
#
0
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N σ

= . (24) 

The approximate estimation of SSD can be calculated 
using the discrete Fourier transform (DFT): 

 [ ]{ } Nknj
N
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Then the energy of the signal can be obtained: 
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Using Xk the centroid of SSD can be calculated: 
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where  
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The quantity β is: 
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s XXfF
NE

f
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Then the effective bandwidth of the ultrasonic RF 
signal is: 

 ( )20
22 2 fFe πβ += . (30) 

The ToF estimation is obtained using Eq.10. 

The numerical simulation 
The numerical simulation has been carried out in order 

to evaluate the influence of the sampling parameters on a 
ToF estimation performance. The signal has been 
simulated as CW with the Gaussian envelope and 
amplitude of unity: 

 ( )tfets C
t

T πα 2cos)(
2−= , (31) 

where α, is related to the transducer bandwidth and fC is 
the transducer center frequency.  

The goal of the numerical simulation was to reveal the 
influence of SNR, sampling frequency and ADC resolution 
on random errors of the ToF estimation. The simulation 
has been carried out using MATLAB. Random errors of 
the ToF have been obtained by taking a large number of 
runs (more than 1000) and obtaining the standard deviation 
of the ToF value estimated. The noise has been simulated 
using randn function. The sampled and noisy version of 
the received signal can be written as: 
 ( ) ( )[ ] randnToFnTfenTs sC

ToFnT
sR s ⋅+−= −− #2cos)(

2
σπα .(32) 

The SNR has been varied by changing the multiplier 
σ# of randn function. The signal power spectral density 
obtained from a single measurement and after one million 
runs RMS averaging are presented in Fig.3. 
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Fig. 3. The power spectral density of the simulated signal 

The results have been obtained using the 1 MHz center 
frequency and the 0.5 MHz bandwidth (-3 dB) transducer 
model. In order to investigate the sampling frequency 
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influence on the ToF estimation the sampling frequency 
has been varied from 1 MHz to 100 MHz. The lowest 
sampling frequency was deliberately chosen to be twice 
the bandwidth. In the case of proper undersampling this 
frequency will hold as a Nyquist higher order zone [9]. The 
aim was to evaluate the sampling frequency and the 
aliasing influence on the variance of TOF. Three types of 
experiments have been carried out: 

a) no antialiasing filter, 
b) antialiasing filter, 
c) only antialiasing filter. 
The results obtained are presented in Fig.4. 

1M 10M 40M

100p

1n

10n

theory

fs=const (50Ms/s), only antialiasing filtering

N0=const, antialiasing filter

N0=const, no antialiasing filter

2E/N
0
=55dB

st
d(

To
F)

, s

Sampling frequency, Hz

 
Fig. 4. The power spectral density of the simulated signal 

For case a) (no antialiasing filter) the signal sampling 
was simulated using Eq. 32. The noise power spectral 
density No after sampling was maintained at the same 
level. This has been done by regulating the multiplier σ# of 
the randn function: 

 
snorm

s
norm f

f## σσ = , (33) 

where fsnorm is the 100 MHz sampling frequency. 
Theoretical calculation of ToF variance for case a) using 
Eq. 10, 22-30 has been done for every sampling rate fs. 

For case b) (antialiasing filter) the signal has been 
sampled at a sufficiently high frequency fsnorm and then 
resampled using MATLAB function resample to get the 
signal at lower rate fs. This command applies an 
antialiasing (lowpass) FIR filter to the input signal during 
the resampling process, and compensates for the filter's 
delay.  

For case c) the signal was sampled at a sufficiently 
high frequency fsnorm and only the antialiasing filter 
applied.  

In all cases measures were taken to maintain the 
constant level of the noise power spectral density No. At 
high sampling frequencies the ToF variance behaved as 
expected: a, b c and theory curves match. But for sampling 
rates approaching the noise and signal power density 
interception point indicated in Fig.3 there is a reduction of 
the ToF random errors. This reduction can be noted on 
experiments where aliasing can occur: cases a and b. There 
is no reduction for case c), where only the filter is applied. 
One can assume that the normality of the errors 
distribution is distorted. In order to check the normality of 
the ToF errors distribution lag plots for various fs 

frequencies have been analyzed. No indication of deviation 
from normality was noted. Refer to Fig. 5 for the ToF lag 
plot at the sampling rate of 2.1 MHz.  

 
Fig. 5. Lag-plot of the ToF values for fs =2.1 MHz case a). 

The carrier frequency has a significant influence on the 
effective bandwidth. This can be seen when analyzing 
Eq.30: for narrowband signals the f0 (centroid of the SSD) 
should prevail. The f0 actually is the carrier frequency fc. 
The influence of the carrier frequency on the ToF 
estimation performance has been investigated.  

The carrier frequency has been varied from 0.3 to        
3 MHz. For the 5 MHz sampling frequency the upper value 
is close to undersampling, but the higher order Nyquist 
zone is still applicable since the bandwidth 0.5 MHz was 
maintained. The results in Fig.6 are in a good agreement 
with Eq. 10 and 30: the increase of the carrier frequency is 
causing reduction of random errors. 
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Fig. 6. Influence of carrier frequency on the ToF random errors    

case a. 

The simulation has been carried out to investigate the 
influence of bandwidth on sampling parameters.  

The pulse duration has been varied in order to get the 
0.1MHz, 0.2MHz, 0.5MHz, 1MHz and 2MHz bandwidth 
signals. The results of the ToF standard deviation versus 
the ADC sampling rate are presented in Fig.7 (case a) and 
Fig.8 (case b). 

The results in Fig.7 are significantly different from 
ones presented in Fig.8 for wide bandwidth simulations. 
This can be explained by antialiasing effect of the filter 
present in the case b. Therefore, there is no ringing of the 
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curve obtained at a wide bandwidth in Fig.8, but the 
ringing is present in Fig.7. 
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Fig. 7. Bandwidth influence on the ToF random errors,  case a. 
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Fig. 8. Bandwidth influence on the ToF random errors, case b. 

It should be noted that the pulse duration reduction 
will cause not only the bandwidth broadening, but also the 
energy decrease. Therefore, the ToF variance is decreasing 
with reduction of the bandwidth. In order to see only the 
bandwidth influence results should be corrected to 
maintain the energy amount constant. The results of 
constant energy investigation, when only the bandwidth is 
varied, are presented in Fig.9. 
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Fig. 9. Bandwidth influence for a constant energy, case a. 

Now the results are in a good agreement with Eq. 10 
predictions. The ToF standard deviation is increasing with 
bandwidth reduction for a constant energy but variable 
bandwidth simulations. The circles in Fig.9 indicate the 
double frequencies of the noise and signal power spectral 
density interception point (the same as indicated in Fig.3) 
for every individual case. 

Eq. 17 implies that ADC quantization noise is related 
to ADC resolution and therefore the resolution should have 
a direct impact on the ToF variance. The numerical 
simulation has been carried out in order to evaluate the 
resolution impact on the ToF standard deviation for a large 
number (1000) of simulation runs. The obtained simulation 
results are presented in Fig.10. 
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Fig. 10. Bits influence on the ToF random errors, case a. 

 
Results for 55 dB, 75 dB and 95 dB SNR are 

presented. In order to get rid of sampling frequency 
induced errors, the sampling has been performed using a 
sufficiently high frequency fsnorm (100 MHz). For high 
SNR the resolution influence is significant. For 
comparison purposes it should be indicated that 95 dB 
correspond to 100 μV noise RMS value and 1V signal 
value: the indicated SNR are very high.  

The curves in Fig. 10 contain a step at certain 
positions. In order to investigate the reason of this 
phenomenon sampling at 10 MHz has been performed. The 
comparison of 100 MHz and 10 MHz sampling 
frequencies are presented in Fig.11. 
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Fig. 11. Bits influence together with a sampling rate, case a. 
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It seems that for a low number of bits there is a 
significant random errors reduction. In order to verify the 
normalness of the distribution the lag-plot of the ToF 
values obtained at 6 bit and 10 MHz fs ADC (for case a) 
has been investigated. The results are presented in Fig.12.  

 
Fig. 12. Lag-plot of the ToF values for fs =10 MHz, case a. 

It turned out that the results contain a discrete structure 
(compare to the graph in Fig.5). 

Conclusions 
The accuracy of the time delay estimation using the 

direct correlation technique has been studied. Results of 
numerical simulation indicate that there is no necessity to 
choose a high sampling frequency for reduction of the ToF 
variance. The sampling rate as low as the double noise and 
signal power density interception point frequency is 
sufficient. Investigation of influence of ADC bits number 
revealed that there is a distortion of ToF distribution law at 
a low sampling frequency and resolution combinations. 

The results are quite unexpected, therefore further 
experimental validation is necessary.  
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L. Svilainis, V. Dumbrava 

Diskretizavimo parametrų įtaka sklidimo laiko įvertinimo tikslumui 

Reziumė 

Nagrinėjami skaitmeninių ultragarsinių sistemų atspindėto signalo 
vėlinimo laiko įvertinimo klausimai. Aptariami vėlinimo laiko matavimo 
ir įvertinimo metodai. Pateikiamos diskrečiosios matematinės išraiškos 
šiam laikui teoriškai įvertinti. Aptariami skaitmeniniai eksperimentai, 
atlikti keičiant sistemoje veikiančio baltojo triukšmo spektrinį tankį, 
diskretizavimo dažnį, skaitmeninio analogo keitiklio skilčių skaičių, 
zonduojančio signalo centrinį dažnį ir juostos plotį.  
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