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Abstract  

The article deals with some acoustic properties of materials that have an impact on the sound insulation of building constructions, 
including sound absorption (abatement). These are namely, the capacity of materials to absorb, i.e. to reduce the sound energy passing 
through a building construction, the influence of an angle of sound wave incidence onto the partition (construction), etc. Sound 
pressure on the area of the partition may be uniform, whereas the amplitude of oscillations gets changed throughout the whole area of 
the partition. The article explores in what cases sound will pass most strongly through the partition of finite dimensions when space-
frequency resonance occurs. 

Investigation showed that the sound energy absorption depended on deformation losses in that material. Changes in the angle of 
the sound wave incidence at the same frequencies create the opportunity for manifestation of alternation of maximums and minimums 
in the motion of plate amplitudes. The property of sound wave incidence, at the sound transmission through the plate of finite 
dimensions, confirms the rightfulness of the division of the curve of the frequency dependence of sound insulation into three ranges of 
frequencies with the different intensity of sound transmission.  
Keywords: sound insulation, building materials, deformation of materials, inner friction losses, insulation properties, sound 
permeability. 

 
 

Introduction 
The acoustic properties of materials predetermine the 

sound penetration through building constructions. At first, 
we will clarify the properties of the materials that become 
manifest in the structure of materials with sound passing 
through constructions from those materials. In our work [1] 
the properties of building materials, predetermining the 
sound insulation of building constructions, are indicated. 
This research covered the density of new building 
materials and its impact on the degree of sound insulation.  

In the present article we shall provide one of the 
properties that was not mentioned, the characteristic of the 
incident wave onto the partition and the impact of its 
parameters on the sound permeability of the partition under 
study. The distribution of the pressure zones of sound on 
the surface of the plate under study, which shows the form 
of its oscillations, is analysed. Here space-frequency 
resonances are elucidated and the highest amplitude of 
plate oscillation is identified. 

Effect of sound absorption properties on sound 
insulation increase  

With an aim of investigating an effect of sound 
absorption properties of materials, it is necessary to know 
the properties of materials to be used for sound insulation 
improvement on which sound energy absorption depend.  

Primarily, it is necessary to make use of the properties 
of inner friction losses of homogeneous materials. Inner 
friction losses appear due to deformation of materials.  

It is necessary to study whether deformation changes 
coincide with the changes of tensions.  

In the case of harmonic fluctuations, these losses may 
be expressed through the ostensible parts of elastic 
constants. 

If the material under study is characterized by the 
complex shearing modulus 

 ( ) GiGiGG s ′+=+= η1  (1) 

and the modulus of elasticity (modulus of compression) 

 ( ) '1 iKKiKK K +=+= η , (2) 

then it is possible to express the rigidity S to plane 
longitudinal waves, by means of a formula: 
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3
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The rigidity S is related to the sound velocity c of plane 
longitudinal waves. 

We also obtain the complex meaning ( )siSS η+= 1 . 
The coefficient of losses sη is the measure of the 
coefficient of absorption α of longitudinal waves: 
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Therefore for obtaining the computed optimum value 
αλ =1,25 at extremely low frequency, it is necessary to 
select the material with sη = 0,4. 
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Sound wave transmission through construction 
Let us study the interrelationship of the wave motion 

of real plates with the wave motion in the environment. For 
solving the set tasks, the use will be made of the method of 
the correlation of wave parameters 11 ,,, nnmm  and 
angles α  and 1α , which are interrelated by the following 
dependences [2]: 

 1101 sinsin/ Θ= απakm ,  
 1101 sincos/ Θ= απbkn ,  
 απ sin/akm u= ,  
 απ cos/bkn u= ,  

where 1m  and 1n  are the numbers of flexural semi-waves 
along the sides; a  and b  are coefficients of wave, 
propagating with the velocity c1; 0k , nk  are the wave 
numbers. 

Sound wave, falling onto the plate at a certain angle 
1θ , excites the inertial wave in the plate with the same 

frequency as a free wave that may differ from the inertial 
one by its form and frequency. The emerging elastic waves 
as to their type may be flexural and longitudinal. The 
presence of the edges in the plate (in our case the plate is 
rectangular) and the incidence of inertial and free waves on 
them lead to the formation of free flexural waves, 
propagating from the edges at a certain angle to the sides 
of the plate. 

The most favourable conditions for sound transmission 
through the plate will be in the case of the best coincidence 
of the wave parameters of sound and vibration fields.  

If the frequency of the incident sound waves at the 
angle 1θ  is equal to the frequency of normal oscillations of 
the plate, three cases are possible: 

– spatial resonance, where 0kku = , 1αα = , i.e. 

1mm = , 1nn = ; 
– incomplete spatial resonance, where the amplitude of 

oscillations is highest in the case of the partial coincidence 
of the wave parameters xux kk 0′= , yuy kk 0′≠  or, 

xux kk 0′≠ , yuy kk 0′= , 1αα ≠ , i.e. 1mm = , 1nn ≠  or 

1mm ≠ , 1nn = ; 
– ordinary spatial resonance, characteristic of the 

highest amplitude of oscillations at the discrepancy of the 
wave parameters 0kku ′≠ , 1αα ≠ , i.e. 1mm ≠ , 1nn ≠ . 

Let the monochromatic plane acoustical wave fall at a 
certain angle 1θ  on the rectangular plate with sides a and 
b, which with the help of hinges rests on four sides. We 
assume the plate as thin, and therefore we take into 
consideration only its flexural oscillations. We select the 
rectangular system of coordinates so that its beginning 
coincides with the lower left top of the plate, and we direct 
axes x and y along its edges. Let’s combine the plane X0Y 
with the neutral plane of the plate.  

In the case of the spatial resonance 0kku ′= , 1αα = , 
the amplitude of displacements of the plate are given by 

 
( )[ ]22 1 ωηω

ξ
−−′

=
im

p

mn

omn
mn . (5) 

In this expression, the conditions of wave coincidence 
have been fulfilled in full, and with the condition mnωω =  
being followed, the effect of the spatial resonance and the 
maximum sound transmission is being observed. The 
condition for the existence of the effect of spatial 
resonance will be: 10 sin/ Θ= umnkk  or 10 sin/ Θ= ccumn . 

In difference from an infinite plate where each 
frequency is normal, for a finite plate, with sound waves 
falling at some angle, the spatial resonance and the highest 
sound transmission are observed only at frequencies of 
normal oscillations, which are of a discrete character.  

At incomplete spatial resonance, where partial 
coincidence of the wave parameters xux kk 0′= , yuy kk 0′≠ , 

1αα ≠  takes place, 
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and in the case of correlations xux kk 0′≠ , yuy kk 0′= , 

1αα ≠ , 
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In the case of an ordinary space resonance, where 
0kku ′≠ , 1αα ≠ , 
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At deducing frequency-angular characteristics of the 
displacement of plates, we substitute the indexes 

11 ,,, nnmm  by their values. After further averaging the 
frequency-angular dependences of sound transmission in 
the frequency integral fΔ , we write the square of the 
amplitude of plate displacements: 

• at the frequency of spatial resonance  

( )ηπξ ffmp Δ′= 22322 32/ ; (9) 
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• at the frequency of ordinary spatial resonances 
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Each of these expressions characterizes the highest 

response of the plate in conformity with the condition of 
coordination of wave parameters. In the expression (12) 
the numerical coefficient 16=Ω  for ordinary resonances 
in the range of frequencies is higher of spatial resonance 
and 4=Ω  in the range lower of spatial resonance. 

From comparison of correlations (Eq.9 - 12), we see 
that the response of the plates to the effect of a sound 
wave, incident at the angle 1θ , is different for each of the 
conditions of the correlation of wave parameters.  

At the specific frequency for each preset angle of 
sound incidence 1θ , its own only (for thin plates) spatial 
resonance exists. The value of this frequency practically in 
many cases with a sufficient degree of precision may be 
determined according to the frequency of wave 
coincidence at the oblique incidence of sound on the 
infinite plate, i.e. according to the Cremer’s formula, since 
the spectrum of normal frequencies of the limited plate at 
relatively high frequencies is dense enough and correction 
on the discrete character of its oscillations is insignificant. 

Let’s trace the character of the frequency dependence 
of sound transmission, directed at a certain angle 1θ , 
through the plate of glass with the dimensions a = 1.21 m 
and b = 1.08 m; thickness h = 0.0052 m; m’ = 13 kg/m2; 
D/m’ = 56.3 m4/c2; η= 2·10–3. 

Applying expressions Eq. 9 - 12, we construct 
frequency characteristics of the amplitude of displacement 
of the plate, excited by a noise band fΔ , for the angle of 
incidence °= 751θ . 

Substituting in the dependences (3) and (4) uk  by its 

value 
uc
ω , we get: 

m
D

fa
m
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2
2

2
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D
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= 2

2
2

2
cos πα , where ( )23 112/ vEhD −=  is the 

flexural rigidity of the plate, depending on the module of 
elasticity (Young) – E, the Poisson’s coefficient v  and the 
plate thickness h. 

In the range of frequencies of a lower spatial 
resonance on the same frequencies, the wave length in air 

0λ  is higher than the wave length of a flexural wave in the 
plate uλ  and accordingly ucc >0 , ukk <′0 . Here the 
ordinary and incomplete spatial resonances are possible. 
The latter are observed in the range of frequencies from the 

boundary frequency of the incomplete spatial frequency to 
the boundary frequency of the complete spatial frequency. 

In this range for each number 1m  and 1n  in the plate 
the number m and n equalling them will be found and the 
angle α  corresponding to them. The amplitude of 
displacements of the points in the plate may be calculated 
for mean values of the angle α  in each estimated band of 
the frequencies fΔ  and the angles 1θ . Hence 

;11
2
1

2 vmmmm uuv ==  vuuv nnnn 11
2
1

2 = , where um1 , un1  
are the numbers of sound semi-waves in the plane of the 
plate along the sides a and b, relating to the lower 
frequency of the interval; um1 , un1  are the numbers 
relating to the higher frequency of the interval. 

Lower of the boundary frequency of the incomplete 
spatial resonance the movement of the plate is determined 
by the ordinary spatial resonance. 

In the range of frequencies higher of the spatial 
resonance on the same frequencies, wave length in air 
becomes less than that of the flexural one uλ , ucc <0 , 

ukk >′0 , therefore, only the ordinary spatial resonances are 
manifest. On those frequencies for the known numbers 1m  
and 1n , the numbers m and n equal to them with the real 
angle α  are not found. Therefore, the amplitude of 
oscillations of the plate in this range we calculate for our 
example at preset α  (45, 60 and 75°). 

Making calculations according to Eq.9 - 12 we assume 
that plate displacement at the frequency of the spatial 
resonance is equal to unity, and the angle 2/πα ≈ . Fig. 1 
presents the envelope curves of sound transmission 
through the given plate made of glass for the angle of 
incidence °= 751θ  versus the frequency. 

 

 
Fig. 1. Frequency dependence of resonant sound transmission 

through glass with thickness h = 0.0052 m, with dimensions 
of 1.21×1.0.8 m 

In the range of frequencies lower of the spatial 
resonance, the curve 4 is structured according to Eq. 10, 
and the curve 1 according to Eq. 11. The curve 2 envelopes 
maximum sound transmission at the incomplete space 
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resonance. The envelope curve 3 reflects the case of 
ordinary resonances. 

In the range of frequencies higher than the spatial 
resonance, the envelope curves are represented by lines 5, 
6 and 7, structured according to Eq. 12 for the angles α , 
equalling correspondingly 75, 60 and 45°. For °= 75α , 
the values of displacement are highest, since that angle is 
closer of all to the angle of incident sound waves 

2/1 πα = .  
From the curves in Fig. 2 it is seen that in the range of 

frequencies lower than the spatial resonance (range II), the 
decisive contribution into sound transmission belongs to 
the incomplete sound resonance (Fig. 2.). 

 

 
Fig. 2. Frequency sound insulation characteristic of a duralumin plate 

with thickness h – 0.003, with dimensions of 1.21×1.0.8 m: 1 – 
the law of mass for the angle °= 451θ ; 2 – experiment 

Lower of the boundary frequency of incomplete spatial 
resonances, where only conditions 0kku ′≠ , 1αα ≠ , 

1mm ≠ , 1nn ≠  are fulfilled, the contribution to sound 
transmission by determination belongs to ordinary spatial 
resonances (range I). In the range higher of spatial 
resonance (range III) the main contribution into sound 
transmission is also made by ordinary resonances. 

The approximated values of the lowest or boundary 
frequencies (at low frequencies) and incomplete spatial 
resonances will be: 

• boundary frequency of the ordinary space 
resonance at 2/11 =m  and 2/1=n : 

 ( )
1111

sinsin4/0))(( nmnmnmr acf Θ=′′ α , (13) 
or 

 ( )
1111

sincos4/0))(( nmnmnmr bcf Θ=′′ α ; (14) 

• boundary frequency of the incomplete space 
resonances, at 11 == mm , 

 mnmnacnrmf Θ=′ sinsin2/)(
10 α , (15) 

or at 11 == nn  
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nmr b
cf

11
sincos2

0
)( Θ
=′

α
. (16) 

The lowest value is taken as the estimated value of 
boundary frequencies that is calculated according to   
Eq.13 - 16. The exact value of those boundary frequencies 

is determined with account taken of the correction in the 
discrete character of natural oscillations of the plate. 

As illustration of the values of boundary frequencies, 
Fig. 2 presents the frequency characteristic of sound 
insulation of the duralumin plate with the parameters 
a = 1.21 m, b = 1.08 m, h = 0.003 m; m’ = 7,93 kg/m2, 
D/m’ = 22.8 m4/c2; °= 451θ , 2/πα = , obtained 
experimentally. The values of boundary frequencies here 
are constituted of 100=′′kf  Hz, °≈′ 201kf Hz and 

7880=kf Hz, whereas the measured (experimental) are 
equal, accordingly, to 100, 200 and 8000 Hz.  

From the given example it is seen that at the directed 
incidence of sound the scheme of division of the curve of 
frequency characteristic of sound insulation into three 
ranges, with the different degree of sound transmission, is 
well confirmed by experimental data and the obtained 
values of boundary frequencies agree with the said data. 

At the estimation of the character of the directed sound 
transmission, of interest is that part of the process where 
sound waves of one frequency fall onto the plate at all 
possible angles from 0 to 2/π . 

On the example of the same plate made of glass, we 
calculate the relative displacements of the plates using 
Eq.9 - 12. Hence, we assume that the fixed frequency is the 
frequency of the spatial resonance 5000=mnf Hz for the 
angle of incidence of sound °= 451mnθ . 

Fig. 3 represents the envelope curves of maximums of 
sound transmission in dependence on the angle of 
incidence. The curves 1 and 4 are calculated according to 
Eq. 10 and 11 at the change of angle 1θ  from 0 to 45°. 

 

Fig. 3. Angular dependence of resonant sound transmission through 
glass with thickness h – 0.00052 m, with dimensions of 
1.21×1.0.8 m 

The curve 2 envelopes maximums of relative 
displacements at the incomplete space resonance. The 
envelope curve 3 belongs to the cases of ordinary 
resonances. In the range of angles of sound incidence from 
45 to 90°, the envelope curves 5, 6 and 7 are calculated at 
α  equal to 75°, 60° and 45°, wherefrom it is seen that 
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Table 1. Values of sound insulation characteristics 

Averaged characteristic of sound insulation, s at Θ1 degree 
Calculated range of 

frequencies 

Numerical 
coefficient 

Λ   15 30 45 60 75 

Range of space 
resonances  (SR) frΘ 

2,92·10-4 0,52 0,58 0,71 1 1,93 

31
abf

f
s rΘΔ′= ,                                        (20) 

Range higher of space 
resonance (SR) f > frΘ 

2,92·10-4 
71016,1 ⋅=Δ′  61012,3 ⋅=Δ′  61056,1 ⋅=Δ′  61004,1 ⋅=Δ′  51036,8 ⋅=Δ′  

Range lower of space 
resonance (SR) 
frΘ’≤ f < frΘ 

1,17·10-3 ( )Θ

ΘΘ

−

′
=

,
1

524,0

r

rr
ff

ff
s                                  (21) 

degree of intensity of sound transmission depends on the 
correlation of the angles α  and 1α , and the closer the 
angle α  to the angle of incident sound 1α , the higher the 
amplitude of plate displacement. 

Construction of the frequency characteristic of 
sound insulation 

At the directed incidence of sound waves onto the 
rectangular thin plate with the sides a and b, for each angle 
of incidence of sound its own frequency of spatial 
resonance exists, where sound transmission is at 
maximum. In the ranges of frequencies higher and lower of 
that frequency, response of the plate is different and 
depends on the conditions of interaction of the acoustic 
field of disturbance and the field of flexural oscillations of 
the plate.   

Investigation of the conditions for the interaction of 
the fields in the cases of ordinary, incomplete and 
complete space resonances enables one to trace the 
mechanism of sound transmission, i.e. to identify the 
contribution of those resonances in each calculated range 
of frequencies into sound transmission through the plate 
along its amplitudes of displacements. 

Quantitative correlations of the amplitude of 
oscillations and the oscillating speed of the plate [2, 4] give 
the opportunity to express the acoustic power that is 
radiated by the plate when it gets excited by a plane sound 
wave falling at the angle 1θ . Hence, knowing the incident 
and through transmitted in the resonant regime acoustic 
powers, we obtain the expression of sound insulation in the 
form of  

 1

2
coslg10 θη

s
ffmR Δ′

Λ= , (17) 

where Λ  is the numerical coefficient, which covers the 
permanent integrations and depends on the width of the 
frequency interval and the calculated area of research 
(Table 1); 1s  is the averaged characteristic of acoustic 76 
radiation, the values of which in each of the calculated 
ranges are found according to Table 1.  
 

The practical method for constructing the frequency 
characteristic of sound insulation of the barrier at the 
directed incidence of sound onto a rectangular thin plate is 
based on the use of the dependence given by Eq.17.  

It is seen from Eq.17 that at the directed sound 
incidence, the quantitative and qualitative measure for 
sound insulation of real one-layered thin plates is as 
follows: the weight of the barrier, the frequency of the 
incident sound, the plate dimensions, its flexural rigidity, 
the loss factor and the angle of incidence of sound waves 
onto the plate. 

Calculations are carried out on the geometric mean 
frequencies of the three-octave bands for three frequency 
ranges: 

– at the frequency of the spatial resonance: 
 1

1
2 )/(sin31,18843 −

Γ ≈ mDf θθ ; (18) 
– at frequencies higher of the spatial resonance 

θΓ> ff ; 
– at frequencies lower of the spatial resonance to the 

boundary frequency of incomplete space resonances: 
 1

1)sin(172 −
Γ =′ θθ af . (19) 

The procedure for construction of the calculated 
dependence of sound insulation is as follows: 

– we define the boundary frequencies θΓf  and θΓ′f  
according to Eq.18 and 19 for the preset angle 1θ ; 

– we find the value of sound insulation at the 
frequency of spatial resonance according to Eq.17 and 
Table 1; 

– in dependence on the angle 1θ  according to Eq.20 
we find the averaged characteristics of sound radiation in 
the range of frequencies higher of the spatial resonance; 

– we define sound insulation in that range of 
frequencies according to Eq.17; 

– from Eq.21 (see Table 1) on each geometric mean 
frequency we find the averaged characteristics of sound 
radiation for the range of frequencies lower of the spatial 
resonance; 

– we define sound insulation in this range of 
frequencies from Eq.17; 
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– we construct the frequency characteristic of sound 
insulation of the given barrier. 

 
 

Fig. 4. Frequency characteristic of insulation of the directed sound 
with silicate glass: thikness h = 0.0052 m, dimensions 
1.21 × 1.08 m, m′ = 13 kg/m2, η = 0.2 10-2 

The frequency characteristic 1 in Fig 4 is constructed 
by using the proposed practical method (see Table 1). The 
frequency dependence 2 is obtained by experiment in a big 
acoustic chamber. The line 3 shows for comparison of the 
“Mass Law”. All dependences are constructed for the angle 

°= 751θ .  

Conclusions 
1. In estimating the acoustic properties of insulating 

materials, it is important to determine whether the 
deformation changes do not coincide with the changes of 
tensions. 

2. In order to determine the optimum values, the 
changes of deformations and the changes of tensions αλ 
should equal αλ = 1.25. The material for low frequencies is 
selected with ης = 0.4. 

3. Calculations show that change of the angle 1θ  at the 
same frequency (see Fig. 3) leads (in dependence on the 
character of interaction of wave parameters and angles of 
the sound and vibration fields) to the emergence of the 
alternating maximums and minimums of the amplitudes of 
plate displacement. The angular characteristic of the 
directed sound transmission through the plate of finite 
dimensions confirms the rightfulness of the division of the 
frequency dependence of sound insulation into three ranges 

of frequencies with the different intensity of sound 
transmission. 

4. Investigation of the conditions for the interaction of 
the fields in the cases of ordinary, incomplete and 
complete spatial resonances enables one to trace the 
mechanism of sound transmission, i.e. to identify the 
contribution of those resonances in each calculated range 
of frequencies into sound transmission through the plate 
along its amplitudes of displacements. 

5. It is seen from Eq.17 that at the directed sound 
incidence, the quantitative and qualitative measure for 
sound insulation of real one-layered thin plates is as 
follows: the weight of the barrier, the frequency of the 
incident sound, the plate dimensions, its flexural rigidity, 
the loss factor and the angle of incidence of sound waves 
onto the plate. 

6. The given practical method makes it possible by the 
method of calculation to construct the frequency 
characteristics of sound insulation of real thin barriers at 
the preset angles of sound incidence. 
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D. Gužas, A. Gailius, I. Girnienė 

Statybinių konstrukcijų garso izoliacijos priklausomybė nuo 
medžiagų akustinių savybių 

Reziumė 

Tyrinėjamos medžiagų savybės, kurios turi didžiausią įtaką 
statybinių konstrukcijų garso izoliacijai. Ištirta medžiagos vidaus trinties 
nuostolių įtaka garso slopinimui, kai garso energija pereina per statybines 
konstrukcijas. Plačiau tyrinėjama garso, krintančio į pertvaros bangos 
kritimo kampą, dažnių įtaka. Nustatyta, kada ir kokiems dažniams esant 
garso izoliacija geriausia ir kada ji yra prasta, t. y. praleidžia tam tikrų 
dažnių garsą į kitą konstrukcijos sienelės pusę. 
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