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Abstract 

The interpolation techniques for the time-of-flight estimation have been under study. The ToF estimation was done using the direct 
correlation technique of the sampled signal. More accurate estimation was done using interpolation between the samples. Three 
interpolation techniques for discrete direct correlation are discussed: linear interpolation of zero crossing, imaginary part of direct 
correlation zero crossing and peak estimation using parabolic interpolation. The theoretical equations for interpolation-influenced 
random errors estimation have been suggested and compared with the numerical simulation. Numerical simulation allowed to analyse 
the influence of additional signal re-sampling on interpolation errors.  
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Introduction 

For decades ultrasonic systems application area is 
expanding: non-destructive testing and evaluation, robotic 
vision and navigation, measurements in production 
automation, medicine diagnostics and treatment, imaging 
in solid and liquid environments, food industry and 
agriculture, etc. [1-3]. One of the tasks accomplished by 
such systems is to define the time-of-flight (ToF) of the 
ultrasonic signal. In the case if the matched filter 
maximum likehood criterion is used for ToF estimation, 
the random errors produced can be evaluated using the 
Cramer-Rao lower bound (CRLB). [4]. Growing 
popularity of digital ultrasonic systems is justified by 
improved accuracy and adaptability of computerized 
processing. The digital signal processing introduces the 
quantization and sampling errors. The selection of proper 
digitization parameters is important [5]. If signal has been 
sampled following the Nyquist criterium, the intersample 
values, can be restored using the sinc function. But 
application the sinc interpolation is a time consuming 
procedure. Furthermore, in the case of the ToF 
measurement, only a peak position estimation is needed. 
Frequently, cubic spline, parabolic interpolation [6] or 
linear interpolation for a zero crossing in real [7] or 
imaginary fields [8] is used.  

The analysis presented below is aimed to evaluate 
these techniques in a sense of sampling errors reduction in 
the ToF estimation procedure.  

The ToF estimation 
The direct correlator technique has been chosen since 

extensive theoretical analysis is available on the ToF 
estimation variance [4,6,9,10]. The technique uses position 
of peak of cross-corelation function RDC as the ToF 
estimate [5]: 
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where ST is the delayed signal, SR is the reference signal, t 
is the time. 

The variance of ToF standard deviation when an 
additive white Gaussian noise (AWGN) with the power 
spectral density N0 is used can be estimated as CRLB [4]: 
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where E is the signal sT(t) energy 
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Fe is the effective bandwidth of the signal: 
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Similar equations can be obtained for a digital signal 
[5]. 

The interpolation procedure 
The analog signal s(t) sampling can be presented as a 

multiplication of the analog with a delta impulse train. This 
will correspond to convolution in frequency domain which 
in turn will cause aliasing for any the frequency component 
falling outside the Nyquist zone fs/2. Furthermore, if no 
interpolation is used, the ToF estimator will have some 
granularity defined by the sampling frequency fs. The ToF 
precision will be significantly influenced by choice of the 
sampling frequency. Simulation results for a standard 
deviation of ToF estimator are presented in Fig.1.  

The ultrasonic transducer with the fc=1 MHz center 
frequency and 400 kHz bandwidth was used in simulation. 
The signal-to-noise ratio (SNR), 
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was 35 dB. The resulting error can be calculated as: 
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Fig 1. ToF estimation variance when no interpolation is used 

The simulation has been carried out using MATLAB. 
The variance of random errors of the ToF have been 
obtained by taking a 1000 of runs and calculating the 
standard deviation of the ToF values. The noise has been 
simulated using randn function. The SNR has been varied 
by keeping the signal amplitude the same but changing the 
multiplier σ# of randn function. The noise power spectral 
density No can be obtained from the noise waveform 
standard deviation σ# and the bandwidth B ratio: 
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Noise bandwidth in the case of the sampled signal 
should be equal to the half the sampling frequency. While 
varying the sampling frequency, the noise power spectral 
density N0 was maintained at the same level in order to 
assume the proper antialiasing filtering. This has been done 
by regulating the multiplier σ# in the following way: 
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where fsnorm is the sampling frequency (100 MHz) for the 
normalized noise level σn. The undersampling case was not 
investigated, therefore the sampling frequency starts at 
3 MHz. This frequency is the first where the signal 
spectrum does not have significant aliasing. The aliasing 
effects are demonstrated in Fig.2.  
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Fig 2. Aliasing effect on the signal power spectral density (PSD) after 

sampling 

It can be seen that for the frequency 2.5 MHz 
significant aliasing occurs and for the frequency 2.3 MHz 
the signal spectrum is completely aliased, therefore the 
resulting power spectral density (PSD) is increased. This 
artificial increase of power in a high frequencies range is 
causing incorrect calculation results when using Eq. 2. 
This phenomenon has been reported in [5].  
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Fig. 3. The variance of ToF for simulation 

 
When a proper antialiasing filter was applied, the 

artificial ToF variance reduction disappeared (refer Fig.3).  
Increase of the sampling frequency could increase the 

system cost and the processing time. Therefore it is 
interesting to investigate the possibility to apply the 
interpolating function of a sparsely sampled signal in order 
to estimate the ToF between samples. The most accurate 
technique is the application of sinc function. But the 
convolution kernel for this function will be very large. In 
addition, we are only interested in a time domain 
estimation: additional samples values are not needed. 
Therefore it was decided to investigate the truncated sinc 
functions. Three techniques have been considered: using 
parabolic function for peak estimation [6], linear 
interpolation for zero crossing detection in a real domain 
[7] and zero crossing detection in an imaginary domain [8]. 
Parabolic interpolation application makes sense in the peak 
region since here it can be expected that it would be close 
to the sinc peak [5]. It is using the sample of a maximum 
amplitude and the two samples surrounding it (Fig.4).  
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Fig. 4. Parabolic interpolation for TOF estimation 



ISSN 1392-2114 ULTRAGARSAS (ULTRASOUND), Vol. 63, No. 4, 2008. 

 27

The positions m-1, m and m+1 obtained at the 
sampling period Ts are used to find the parabolic equation 
for apex: 
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This equation can be used to calculate the additional 
ToF estimation errors introduced due to the noise present 
in sampled points. It was assumed that the Ts jitter induced 
by ADC is negligible compared to the influence of the 
noise present in sampled points m-1, m and m+1. 
Sensitivity coefficients for three corresponding points then 
are obtained as relative derivatives of the respective 
components: 
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The resulting ToF estimation standard deviation is the 
root-mean-square (RMS) sum of the amplitude noise σnDC 
after direct correlation filter and the sensitivity syi 
coefficients product: 
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The results obtained using Eq. 2 and 11 are presented 
in Fig.5. 
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Fig. 5. ToF estimation variance for parabolic interpolation  

Another candidate for ToF estimation is the technique, 
applying the low amplitudes region for a linear 
interpolation application of the zero crossing time instant 
(Fig.6).  

The region of the zero crossing seems attractive since 
here the sinc function will turn into a line. The linear 
equation steepness coefficient b and estimation ToF#L are 
obtained as: 
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from two neighboring points yz and yz+1. In the same way 
as per Eq. 10 and 11 the resulting ToF estimation standard 
deviation is obtained: 
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Fig. 6. Linear interpolation of the zero crossing for TOF estimation 

The results obtained using Eq. 2 and 13 are presented 
in Fig.7. 
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Fig. 7. ToF variance for a linear interpolation of the zero crossing 

moment 

If the Hilbert transform is used to obtain the imaginary 
part of the correlation function [8], the zero crossing 
detection in the imaginary domain will correspond to the 
peak position. Then it seems attractive to use a linear 
interpolation to obtain intersample estimate of this 
moment. Eq. 13 will hold here. The results obtained using 
Eq. 2 and 13 for the zero crossing estimate and the 
numerical experiment results are presented in Fig.8. 

In all the experiments above, the ToF variance 
obtained experimentally was lower than theoretical 
predictions. The reason was twofold: the discrepancies in 
estimate of the noise standard deviation after the direct 
correlation filter and a convenient signal placement relative 
to sampling points.  
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Fig. 8. ToF estimation variance for linear interpolation of the zero 

crossing in the imaginary domain 

Numerical experiment for dithered time 
As it was indicated in the previous chapter, ToF 

variance is dependant on signal placement versus sampling 
positions. Therefore of new numerical simulation has been 
carried out where the time scale dithering was introduced. 
Signal position in the time domain was varied along with 
statistics accumulation cycles. This time dither later was 
removed from the resulting ToF estimate, leaving statistics 
of all time positions influence on the ToF variance. The 
results for all three techniques are presented in Fig. 9. 
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Fig. 9. ToF variance for dithered time case 

Now it turned out that all three techniques exhibited 
large ToF variations in a low sampling frequency domain. 
One of the reasons was the increase of approximation 
errors, which are prevailing the random errors (Fig. 10). 

Furthermore, in some cases variation was even higher 
(3.5 MHz point in Fig. 9). The reason here was the peak 
detection jumping between neighboring points since the 
sampling was too sparse.  

Therefore it can be concluded that the sampling 
frequency was not sufficiently high. In order to check this 
assumption, the experiments were repeated with the 
software resampling to increase the sampling frequency 16 
times (Fig. 12). The MATLAB procedure resample was 
used for that purpose. 
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Fig. 10. ToF values for dithered time case at 3MHz sampling 
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Fig. 11. ToF jumping for the dithered time case at 3.5MHz sampling 
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Fig. 12. ToF variance for the dithered time case with x16 resampling 

The standard deviation of all techniques now adhered 
to Eq. 2 predicted values. The presented results indicate 
that information was present even in the data sampled at a 
very low frequency.  

Conclusions 
Investigation results indicate that a significantly low 

sampling frequency can be used for the high precision TOF 
estimation if the noise spectral density is kept constant. 
This should be the case if a high order antialiasing filtering 
is used on the received signals. Simple ToF intersample 
position estimation techniques, such as parabolic or linear 
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function fit can be used. At very low sampling frequencies 
these techniques have to be combined with resampling in 
the peak or zero crossing area. This will slow down the 
processing since conventional resampling procedures 
process the whole signal. A proper resampling procedure 
should be developed which is capable to apply some sort 
of truncated sinc kernel only locally in a peak area. 
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Interpoliacijos metodų sklidimo laikui įvertinti analizė  

Reziumė 

Nagrinėjami interpoliacijos metodai sklidimo laikui įvertinti 
skaitmeninėse ultragarsinėse sistemose. Tiesioginės koreliacijos metodas 
buvo naudojamas diskretizuoto signalo vėlinimo laiko įverčiui gauti. 
Sklidimo laikui patikslinti taikyti trys interpoliacijos metodai: nulio 
kirtimo tiesinė interpoliacija, pikinės vertės interpoliacija parabole ir 
Hilberto transformacijos būdu gautos menamosios dalies perėjimo per 
nulį tiesinė interpoliacija. Pasiūlytos analitinės išraiškos signalo vėlinimo 
laiko įverčio interpoliacijos atsitiktinėms paklaidoms įvertinti ir 
palygintos su skaitmeninio eksperimento rezultatais. Skaitmeniniai 
eksperimentai buvo skirti minėtų interpoliacijos metodų ir papildomos 
interpoliacijos naudojant sinc funkciją įtakai įvertinti.  
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