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Abstract  

The need for fast calculation technique of ultrasonic field of rectangular transducer is related to design of cylindrical transducer 
arrays for medical applications. These transducer arrays are 10mm diameter, approximately 5mm length and consist of 16-32 
rectangular elements. In order to determine optimal parameter transducer array it is needed to investigate what can be “seen” under 
different conditions with each type of transducer array. As the total ultrasonic field of cylindrical array is the sum of the field created by 
the separate elements the key part of the model becomes calculation of the ultrasonic field of rectangular transducer. There are many 
works devoted to the calculation of the ultrasonic fields of the transducers possessing different contour of active surface.  

In the work present there are proposed fast modification of the diffraction based technique for calculation of the ultrasonic field of 
rectangular transducer. It was show that the velocity potential can be calculated only in the plane of transducer. The velocity potential 
and pressure field in other point are calculated using interpolation. The application of the adaptive sampling in time domain enables 
essentially increase calculation time and at the keep necessary accuracy.  
Keywords: Ultrasonic field, rectangular transducer, diffraction approach, fast modeling. 
 
 
Introduction 

The conventional phased arrays, used in medicine, 
usually consist of large number of narrow rectangular 
elements and are investigated quite widely. The different 
problems have been met in the development of cylindrical 
transducer arrays used in ultrasonic endoscope. In this case 
the number of elements and beam steering possibilities 
including focusing are limited mainly due to energy 
recourses. In order to predict images of what quality can be 
obtained using different number of elements the computer 
model of a cylindrical transducer array should be 
developed. The key part of such model is ultrasonic field 
calculation of a rectangular transducer. There are many 
techniques and publications devoted to this topic, however 
main disadvantage of them is the fact that they are 
relatively slow, mainly due to the need of small sampling 
steps in the space and time domains at high frequencies. 

Objective of this work is to develop method for a fast 
calculation of ultrasound field of a rectangular shape 
transducer, which is used in a construction of a 
cylindrically placed transducers array. 

Basic approach 
There are many methods [3,4,6] which enable to 

calculate the pulse response and ultrasound fields of 
transducers possessing different geometry. The theory is 
based on the Huygens’s principle which states that the 
pulse response of the velocity potential ( )zyt,xh ,,  at any 
observation point at a given time instant is equal to the sum 
of ultrasonic waves coming from all elementary segments 
dS of the active transducer surface  
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where t is the time, r is the distance from the observation 
point to the transducers elementary segment, c is the 
ultrasound velocity in the medium, S is the active 

transducer surface. In many articles [1-6] it was shown that 
in the case of a piston like vibration of the transducer 
surface, the pulse response ( )zyt,xh ,,  at a given time and 
observation point is proportional to arc of circular 
equidistant lines intersecting with the transducers face. 
Then the distribution of the acoustic pressure can be found 
from the expression 
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where ρ is the density of the medium, u(t) is the wave from 
of the particle velocity of the transducer surface and the 
symbol ⊗ denotes the convolution operation.  

Basic method for rectangular transducer 

So, in order to calculate the pulse response ( )zyt,xh ,,  
it is necessary to find out the arc angles of equidistance 
lines intersection with the transducers surface at each time 
instance. In work [4] and many later it was demonstrated 
that for a circular transducer these angles can be found 
analytically. In the case of numerical solutions it can be 
done for any transducer shape [5, 6] and the rectangular 
transducer is not exception.  

The meaning of these equidistant lines for the case of a 
rectangular transducer is explained in Fig.1. There can be 
an unlimited number of the equidistant lines corresponding 
to the time instances [ ]21, ttt∈ , crt /11 =  corresponds to 
the arrival time of the waves from the closest elementary 
segment of the transducer surface and crt /22 =  to the 
farthest. The number of these lines used in calculation 
depends on the sampling interval in the time domain tΔ . 

In order to calculate the angle of the arc intersecting 
with the surface of the transducer it is necessary to 
determine the angles in polar coordinates of the points at 
which the equidistant line crosses the contour line of the 
transducer (Fig.2). 

Then the velocity potential can be expressed as 
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where N(t) is the total number of arc segments for the  
observation point ( )zyxP ,,  intersecting with transducers 

boundaries for a given time instance, ( )( )ti
1Φ  and ( )( )ti

2Φ  is 
in and out angles for the equidistant line corresponding to 
the time instance t. It is necessary to state that the 
equidistant line for an arbitrary selected point can cross the 
contour of the transducer many times. In the case of the 
rectangular transducer the maximal possible number of 
cross-section points is 8. This procedure must be repeated 
for all time instances [ ]21, ttt∈ . 

 

Fig. 1. Explanation of the equidistant lines for the case of a 
rectangular transducer  

 

Fig. 2. Explanation of in and out arc angles Φ1 and Φ2 used in 
calculation of a velocity potential. 

However, this a rather simple approach possesses one 
very essential disadvantage. The relatively high frequency 
(up to 10MHz) leads to small sampling steps in the space 
and time domains and as a consequence to the huge 
number of points at which the calculation should be 
performed. So, the calculation of a total field requires a 
long time of processing. Additionally, the time instances t1, 
t2 of the arrival wave from the closest and farthest points of 
the transducer surface becomes closer to each other for a 
spatial point situated at bigger distances, that is the time 
interval 1212 ttt −=Δ  reduces. So, in order to keep the 

same accuracy in a pulse response calculation, the 
sampling step in the time domain should be smaller for the 
point situated at bigger distances from transducers. Usually 
in a conventional pulse response point the same sampling 
step in the time domain is used for all special points under 
the analysis. This leads to the over-sampling at close 
distances and as a consequence to the long calculation 
time. 

Optimization of the method 
In optimization was exploited one of the essential 

features of the method described above. In general, the arc 
angles are the same for all spatial points which possess the 
same projection on the transducer surface. Of course, 
equidistant arcs correspond to different propagation time.   

So, the idea is that in the case when the planar 
rectangular transducer is placed in the xOy plane (Fig.1), 
only calculation of the velocity potential at the point 

( )0,,' yxP  is needed in order to obtain the pulse response 
at any point ( )zyxP ,,  possessing the same projection 

( )0,,' yxP . It means that once the velocity potential is 
found at the point ( )0,,' yxP  the pulse responses of the 
velocity potential at the points ( )zyxP ,,  can be obtained 
simply using interpolation.  

Such an approach was implemented in the MatLab 
medium. The method was designed in such a way that all 
main calculations are done with data arrays instead of 
application of for loops. Such technique also enables to 
reduce the calculation time and simplifies task description 
in the programs. The general algorithm (without 
application of interpolation) can be described by following 
steps: 

1. The vectors X,Y,Z containing the spatial 
coordinates of a point under analysis are created. 
The size of the vector is a number of points NP; 

2. The distances R2 between observation points 
projection and the furthest point of the transducer 
surface are determined 
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where a and b are the length and the width of the 
transducer (Fig.2);  

3. The distances r2 between observation points and 
the furthest point of the transducer surface are 
calculated 

 2
2

2
2 RZr += ; (5) 

4. The time instances corresponding to arrival of the 
waves from the farthest point and from the 
transducer plane are determined  

 
cmax
2rT = , (6) 

 
cmin
ZT = ; (7) 

5. The maximal number of samples between Tmin 
and Tmax is determined 
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where Δt is the interval of the sampling in the 
time domain. This value is needed for 
determination of the sizes of arrays used in 
following steps; 

6. The matrix containing all time instances necessary 
for calculation of the pulse response of velocity 
potential for all point under analysis is created 

 ( ) ]1...0[ tNst
T
minint Δ⋅−⋅+⋅= 11TT , (9) 

where 1 is the vector of ones with the same size as 
the vector Tmin, the upper index T denotes the 
transpose operation. The size of the new matrix is 
NP by Nst; 

7. The radii of all equidistant arcs necessary in 
modeling are determined  

 222 ZTR −⋅= intc . (10) 
8. The coordinates of intersection points between the 

equidistant arcs and extended lines of the 
boundaries of the rectangular transducer are found  
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9. The intersections angles are calculated using four-
quadrant inverse tangent 
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10. Correction of the angles depending on the 
observation point position with respect to the 
transducer is performed. If the point is inside 
boundary, the angles of all arcs not reaching any 
edge of the transducer are set to 2π. The angles of 
arcs for the points which are on the edge and arc 
does not crosses other boundaries are set to π. If 
the point is outside the transducer boundaries, the 
angles of arcs not reaching any edge of transducer 
are set to zero. 

11. The angles are sorted in ascending order and the 
angles with odd numbers are subtracted from the 
angles with even number. This gives arc segments 

intersecting with the transducer actives surface. 
These segments are used for calculation of the 
pulse response of velocity potential according to 
Eq.3. 

12. The acoustic pressure field is obtained according 
to Eq.2.  

It is necessary to mention that due to the symmetry of 
a rectangular transducer with respect to x and y axis (Fig.3) 
it is reasonable to perform calculations only for a quarter, 
what also enables to save a modeling time.  

 

Fig. 3. Transducer geometry viewed from a top with symmetry axes 
and the observation point P related to mirror points Pm1, Pm2’ 
and Pm2.  

As have been mentioned before the selection of the 
sampling frequency or interval is very important issue for 
the technique under analysis. If the sampling interval will 
be set uniformly for the whole calculation problem, then or 
the pulse response at further distance will be not accurate 
enough or the pulse response of closest points will be over-
sampled. The purposed solution for this problem is to use a 
dynamic sampling frequency which depends on the 
distance of the observation point with respect to the 
transducer surface. In this case not the sampling interval is 
constant for all observation points, but the number of 
points in the pulse response. In Fig. 4 are shown three 
observation points P1, P2, P3 with the same x and y 
coordinates, but with different distances from the 
transducers surface plane. 

At first the velocity potential is calculated for the point 
P1 according to the method described above. In the next 
steps the velocity potentials of points P2 and P3 are 
calculated using linear interpolations from the P1 point 
velocity potential. The number of points in the pulse 
responses of points P1, P2, P3 are the same and defined by 
Eq.8. So, interpolation is done with the same number of 
time instances for all points with the same x and y 
coordinates. Of course, the sampling step at each point is 
different and determined by  

 
st

minmax
N

TTΔt −
= . (19) 

In the following step the velocity potential h(t,x,y,z) is 
interpolated at time instances corresponding to the 
calculated radii R(t,x,y,z). According to the approach 
proposed instead of the calculation of the velocity potential 
function for points above xOy plane only the time axis is 
recalculated and interpolated from the pulse response of 
the observation point projection. The velocity potential 
pulse responses for point P1, P2, P3 are shown in Fig. 5. 
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The velocity potential interpolation is faster then its 
direct calculation. It is complicated to estimate the level of 
compilation time reduction because it is related to the 
accuracy of the modeling and should be estimated in more 
details. However it can be stated that the calculation time 
was reduced at least a few times.  

 
Fig. 4. Three points P1, P2 and P3 with the same x and y coordinates 

but with different z coordinates. Velocity potential patterns for 
these points are the same. 

 

Fig. 5. Velocity potential patterns for three different points with the 
same x=4.3 mm and y=2.5 mm coordinates, but different z 
coordinate for the 2x5 mm transducer.  

Calculation results 
In order to test the model developed the ultrasonic 

field of the rectangular transducer with the length 5mm and 
the width 2mm was calculated. The 5 MHz transducer 
generates 3 period burst with the Gaussian envelope. The 
waveform of the signal used in the modeling is presented 
in Fig.6. The obtained ultrasonic field in the plane across 
the transducer is presented in Fig.7. In order to see better 
the details of the field the results are presented as a surface 
in a 3D space and lightened with a light source.  

 

Fig. 6. Signal used in calculations. The central frequency 5 MHz, the 
number of periods 3, the asymmetry coefficient 0.5 

 
Fig. 7. Calculated spatial peak to peak pressure distribution of 

transducer 2x5 mm in x0z plane perpendicularly to the 
transducer surface at 5 MHz frequency. 

Conclusions and comments 
A new fast technique for calculation of an ultrasonic 

field of the rectangular transducer was developed, which 
enables essentially, at least a few times to reduce the 
modeling time.  

In the next stages of the investigation it is planed to 
perform a detailed evaluation of the accuracy of the 
method comparing the results with ultrasonic fields 
obtained by other models and measured experimentally. 
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L. Mažeika, M. Gresevičius 

Spartusis stačiakampio keitiklio lauko apskaičiavimo metodas 

Reziumė 

Tokio metodo poreikis atsirado projektuojant mažas ultragarsines 
cilindrines gardeles taikyti medicinoje. Jos yra apie 10 mm skersmens ir  
6 mm ilgio ir susideda iš 16-32 stačiakampių pjezoelementų. Šių 
elementų ilgis yra apie 5 mm, plotis - tarp 0,5-2 mm (priklauso nuo jų 
bendro skaičiaus). Norint nustatyti optimalius šių gardelių parametrus, 
faktiškai reikia ištirti, ką ir kokiu tikslumu galima matuoti ir „matyti” su 
kiekvieno tipo gardele. Kadangi bendras gardelės sukuriamas laukas yra 
suma laukų, sukuriamų kiekvieno elemento atskirai, stačiakampio 
keitiklio lauko apskaičiavimo metodas tampa esminis. Yra gana daug 
keitiklių laukų skaičiavimo metodų, tačiau jie dažniausiai per lėti. Šiame 
darbe pateikiama žinomo difrakcinio metodo atmaina, pritaikyta išimtinai 
stačiakampio keitiklio laukui apskaičiuoti. Parodyta, kad skaičiavimo 
spartą galima padidinti apskaičiuojant greičio potencialą keitiklio 
plokštumoje, o jo laikinė priklausomybė bet kuriame erdvės taške 
gaunama atliekant interpoliaciją. Straipsnyje pateiktas metodo aprašymas, 
duota gaunamų laukų pavyzdžių.  
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