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Abstract

Influence of the dispersion on the measurement of phase and group velocities of Lamb wave in a plate is investigated in the work
presented. The velocity of propagating guided waves is important parameter of their application in non-destructive testing. Accurate
determination of the Lamb wave velocity is complicated by the fact that it is frequency dependent. In order to determine in what way the
dispersion affects the uncertainties of the phase and group velocity measurements the investigation was carried out. The finite element
model of the 2 mm thickness and 200 mm length aluminium plate was used in order to obtain the signals for analysis. The A0 mode was
excited by adding a shear force to one of the ends of the plate. The excitation signal was 300 kHz burst with the Gaussian envelop.
Determination of the velocities was based on measurement of the propagation time. The propagation time was measured using a zero-
crossing technique. Investigations demonstrated that the obtained values of phase velocities depend essentially on the number of periods
in the burst which was used for measurements by the zero-crossing technique. The obtained regularities enable to compensate part of
uncertainties of the phases velocity measurement. Moreover it enables to reconstruct the segment of the phase velocity dispersion curve
in narrow frequency ranges.
Keywords: Lamb wave, dispersion, phase and group velocity, measurement, finite element.

Introduction The segment of dispersion curves of this mode in the
frequency range 0-500kHz is presented in Fig.l. The
dispersion curves were calculated assuming that the
propagation velocity of the longitudinal wave is
€, =6350m/s and of the shear waves is ¢t =3100 m/s.

Guided ultrasonic waves are used in many non-
destructive testing (NDT) and material evaluation
techniques (NDE). The propagation velocity of these
waves is a key parameter defining efficiency and accuracy
of these techniques. However, the guided waves possess a

dispersion phenomenon. This leads to the presence of two ¢, mis 2
different propagation velocities — phase and group 302?)00

velocities, both dependent on a frequency. The dispersion 2817 _—

phenomenon is characterized by dispersion curves which 2500 e 1
determine the propagation velocity of different guided 2153 v —
wave modes at different frequencies. These velocities 173200 /

correspond to propagation of harmonic, single frequency 1500 el

waves. However, in NDT the pulsed ultrasonic waves are /

mainly used. The waveform of signals usually is some kind 1000 ,/

of burst with the Gaussian envelope and, of course, in the / /

frequency domain covers some bandwidth. So, in the 500 [/

measurements of the phase and the group velocities the

question arises not only about the value of the velocity 0 0 10 150 200 250 300 350 400 450 f, kHz

itself, but also about the frequency to which it corresponds. . . . .
. I . Fig.1. The dispersion curves of phase (1) and group (2) velocities of
In most cases the propagation velocity is determined L . L
. X ; Ay Lamb wave mode propagating in 2mm thickness aluminium
using measurement of the propagation time. The delay plate

time can be measured using different techniques: signal btain sienal Iysi
maximum position in the time domain, zero-crossing ) In order to obtain sigha’s nece;sary for ana }{SIS of
technique [1,2], cross-correlation or optimization based different measurement techniques the 2D finite element

[3]. model of the aluminium plate was created (Fig.2). The

The objective of the work presented is to investigate in following parameters of the aluminium plate were used in

detail the Lamb wave velocity measurement technique  the model: density p =2780kg/m’>, Young modulus
based on the zero-crossing approach and using the signals E = 73.1 GPa, the Poisson’s ratio v =0.3. The sampling
obtained by finite element modelling. step in the spatial domain was dx=0.1mm and dt=0.15ps in
the time domain. The Ay mode was excited by attaching a

The model tangential force to one of the plate edges (Fig.2). The
The Lamb waves possess infinite number of modes, =~ Waveform of the excitation signal is presented in Fig.3 and
however in most cases only lowest modes are exploited. the frequency spectrum in Fig.4. As can be seen at - 6 dB
The asymmetric A, mode of Lamb wave propagating in a  level it covers the frequency range from 220 kHz up to
2 mm thickness aluminium plate was selected for analysis. ~ 380 kHz. The phase and the group velocities for these
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frequencies obtained from the dispersion curves are
presented in Table 1 and in Fig.1. The propagation of the
Lamb wave was modelled for the time interval up to
100 ps.
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Fig.2. The finite element model for investigation of propagation of the
Ay mode Lamb wave in aluminium plate
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Fig.3. The waveform of the excitation signal
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Fig.4. The frequency spectrum of the excitation signal

Table 1. The of phase and group velocities of Lamb waves in
aluminium plate at different frequencies

Frequency, KHz Phase velocity , m/s Group velocity, m/s

220 1794 2817
300 1999 2972
380 2153 3056

The Lamb waves usually are measured by scanning the
contact type transducer over top surface of the plate. Such
transducer is sensitive to the normal component of the
particle velocity of propagating waves. In order to obtain
the signals as much as possible closer to experimental ones
the particle velocity at each node of a finite element grid
corresponding to the upper surface of the plate were
recorded. The obtained B-scan image is presented in Fig.5.
The direct Lamb wave and reflected by the end of the plate

can be observed clearly. Also it can be seen that phase and
group velocities are different. The propagation time of the
phase velocity was estimated using the zero-crossing
technique. In short it is explained by Fig.6. According to
this technique some threshold level Uy, is set in advance.
Using this level the approximate position in the time
domain of the signal corresponding to the propagating
wave is determined. In the second step accurately the time
instants at which the signal crosses the zero amplitude line
are determined. As it is shown in Fig.6 the four zero
crossing  instants  t;(Xp).tr (Xn).t3(Xp ) t4(Xy)  are

determined for each signal uy (t), where X, is the

measurement positions along the plate, n=1+ N, N is the
total number of the measurement positions. The
dependency of the propagation time measured using the
first zero-crossing point t;(X) versus the distance is
presented in Fig.7. As can be seen in some distance
intervals it increases almost linearly, but then jumps
sharply down. It is explained by the fact that the phase and
group velocities are different and the half periods of signal
with the distance in some sense “moves” inside the signal
envelop. At the “jump” position the threshold technique
fits to another period of the signal. The distance between
two “jumps” is very important because it determines the
maximal distance at which the phase velocity can be
measured. The propagation time measured using other
zero-crossing points B(X), t(X) t3(X) possesses similar
regularities
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Fig.5. The B-scan image of the normal component of the particle
velocity on the surface of the plate

In general the zero-crossing instants correspond to the
zero phase of the signal. So, the phase velocity can be
determined from

Xn, = Xp
Cph = 3 : s (1)
tm an _tm an

where m =1, 2, 3 or 4. However simple application of this
equation by using measurements at two positions along X
axis leads to big uncertainties. On the other hand in the
distance intervals between two “jumps” X € ]xk + xk_l[ , the

propagation time can be approximated by equation

t(xp)= 2+t @
Ay
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where k =1+K , K is the total number of jumps. So, the
Cp Was determined by the least-squares method using
Eq.2. Depending on the number of “jumps” several values
of Cpy can be obtained, which correspond to different
propagation distance X , where X, = (Xk + Xk,l)/ 2.
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Fig.6. Explanation of the zero-crossing technique. 1 ,2, 3, 4 are the
zero crossing points used in phase velocity estimation; LILIII
are half periods of the signal used in the analysis; Uy, is the
threshold level
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Fig.7. The propagation time versus distance determined using the
first zero-crossing point.

Cph, m/s
2060 B
2040 e
2020 e e
2000
1980 P 03
1960
1940 .\o\
1920 o 4
1900 0. e g 0O
1880'

0 50 100 150 X, mm

Fig.8. The propagation velocity of Ay mode Lamb wave measured at
different distances using different zero-crossing points. 1, 2, 3,
4 correspond to the number of zero-crossing point in the burst
of the signal which was used for phase velocity determination
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Moreover, the set of these values {Ca  k m} is obtained

using different zero crossing points (Fig.6). The obtained
results are presented in Fig.8.

As can be seen the value of phase velocity obtained
using the first and the second =zero-crossing points
increases with a distance. The phase velocity obtained
using the fourth zero crossing point demonstrates opposite
regularity. Most stable results are obtained using the third
zero-crossing point. These dependencies have a systematic
character and probably are related to the dispersion

phenomena and can be explained by following

considerations:

1. The signal is not harmonic, but possess some
bandwidth;

2. At the excitation point the components

corresponding to different frequencies are more or
less uniformly distributed in the signal (in the time
domain);

3. During propagation of the Lamb waves the faster
components start to concentrates in the front part of
the signal and slower ones at the end of the signal;

4. Depending on which part of the signal in the time

domain is used for phase velocity estimation it will
correspond not to the central frequency, but to the
frequency which is concentrating in this part of the
signal.

So, the question arise how the redistribution of the
different frequency components can be detected or
measured. Analysis in the frequency domain using moving
narrow window will be not efficient because a narrow
window in the time domain lead to big uncertainties in the
frequency domain. One of the ways is to measure
accurately the duration of each half period in the signal and
to monitor their variations depending on a distance. As the
propagation times are calculated according to different
zero-crossing points, the duration of half periods can be
determined according to

Tos.1(x) =t (x) = t;(x),

To.s.n (%)=t (x) 5 (x),

Tosm () = t4 () -5 (x),
where T, Tos 1, Tosp are duration of the first, the

second and the third half periods of the signal. The
obtained dependencies are presented in Fig.9. As can be
seen the duration of the half period varies essentially.
These variations can be explained by the fact that due to
difference of the phase and the group velocities each of the
half periods “moves” inside the signal during wave
propagation. For a better understanding the obtained
durations Ty 51,To 511, To.5,m can be easily converted into

(€)

the equivalent frequencies by
fO.S,I(X) =0.5/Tgs1

fo.s,u(x) =0.5/To 51

fo,s,m(x) =0.5/Tos -
In order to obtain more reliable results the mean values

“

f_o's,l(x), f_o.s,n(x), f_o.s,m(x) of these equivalent frequencies

were calculated for each interval between “jumps”. The
obtained results are shown in Fig.9. As can be seen the
equivalent frequency of the first half period increases at
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bigger propagation distances. The equivalent frequency of
the third half period demonstrates opposite regularity - it
decreases with distance. It can be explained by the fact that
in the frequency ranges under analysis phase and group
velocities increase with a distance. So, components
corresponding to higher frequencies are faster and arrive
earlier and as a consequence they are more concentrated in
the first part of the signal.
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Fig.9. Durations of different half periods of the signal versus
propagation distance. 1, 2, 3 are the numbers of the half period
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Fig.10. The equivalent frequencies of different half periods of the
signal; 1, 2, 3 are the numbers of the half period

The obtained regularities can be exploited for more
accurate estimation of the phase velocity. As it was shown
in Fig.6, the estimated phase velocity value depends
essentially on the number of a zero-crossing point which
was used. It can be assumed that these values are not just
scattering the results caused by some uncertainties but
correspond to different frequencies. In order to test this
hypothesis the following correction was introduced:

1. The second zero-crossing point is between the first
and the second half period and the third zero-
crossing point is between the second and the third
half period, so the mean values of the equivalent
frequency were calculated

FO,S,I(X): (fo‘s,l(x)Jr fo.s,n(x))/ 2,

Fo.s,z (X) = (fo.s,n (X)+ fo.s,m(x))/ 2.

These equivalent frequency values were related to
the corresponding phase velocities and both values
overlaid on the dispersion curve graph (Fig.11).
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The obtained results demonstrate a very good
coincidence of the phase velocity values calculated using
modelled signals and theoretical dispersion curve.
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Fig.1l. The phase velocities of A, mode Lamb wave in 2mm
thickness aluminium plate obtained using simulated signals
and theoretical dispersion curve

Conclusions

It was demonstrated that measurements of the phase
velocity of guided waves are much more complicated
comparing to conventional ultrasonic measurements. It was
proposed to use precise measurement of the duration of
different half periods of the signal and to use this
information for compensation of uncertainties of the phase
velocity measurement. The proposed technique enables not
only to reduce uncertainties, but also to reconstruct
segment of the dispersion curve.
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Dispersijos jtakos Lembo bangy fazinio ir grupinio greicio
matavimams tyrimas

Reziumé

Atliktas dispersijos jtakos nukreiptyjyu bangy fazinio ir grupinio
grei¢io matavimams tyrimas. Naudojant Lembo bangas ultragarsiniuose
neardomuosiuose bandymuose, svarbu turéti tikslius duomenis apie Siy
bangy greitj tiriamajame objekte. Lembo bangy grei¢io matavimo
rezultaty tiksluma apsunkina §iy bangy fazinio ir grupinio grei¢io
priklausomybé nuo daznio. Siai jtakai nustatyti buvo idtirtas fazinio ir
grupinio grei¢io matavimo metodas, pagristas sklidimo laiko matavimu
naudojant peréjimo per nulj bida. Tyrimo metu buvo naudojami signalai,
gauti baigtiniy elementy metodu modeliuojant Lembo bangos A, modos
sklidima 2 mm storio ir 200 mm ilgio aliuminio ploksteléje. Bangoms
zadinti buvo naudojamas jprastas ultragarsiniy neardomyjy bandymuy
300 kHz Gauso amplitudés signalas. Tyrimais nustatyta, kad skirtingy
signaly periody trukmé kinta bangai sklindant plokstele ir tai salygoja
rezultaty priklausomybg¢ nuo matavimams naudoto signalo periodo
bendrajame vietos signale. Nustatytieji désningumai ne tik jgalino
sumazinti vidutinés iSmatuotos fazinio grei¢io vertés neapibrézti, bet ir
atkurti dispersinés kreivés segmenta Siame dazniy diapazone.
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