
ISSN 1392-2114 ULTRAGARSAS (ULTRASOUND), Vol. 64, No.4, 2009. 

 18

Influence of the dispersion on measurement of phase and group velocities of Lamb 
waves 

L. Mažeika, L. Draudvilienė, E. Žukauskas  

Ultrasound Institute, Kaunas University of Technology, 
Studentu Str. 50, Kaunas, LITHUANIA. Phone: +370 37 351162. Fax: +370 37 451489. 
E-mail: ulab@ktu.lt 
Abstract  

Influence of the dispersion on the measurement of phase and group velocities of Lamb wave in a plate is investigated in the work 
presented. The velocity of propagating guided waves is important parameter of their application in non-destructive testing. Accurate 
determination of the Lamb wave velocity is complicated by the fact that it is frequency dependent. In order to determine in what way the 
dispersion affects the uncertainties of the phase and group velocity measurements the investigation was carried out. The finite element 
model of the 2 mm thickness and 200 mm length aluminium plate was used in order to obtain the signals for analysis. The A0 mode was 
excited by adding a shear force to one of the ends of the plate. The excitation signal was 300 kHz burst with the Gaussian envelop. 
Determination of the velocities was based on measurement of the propagation time. The propagation time was measured using a zero-
crossing technique. Investigations demonstrated that the obtained values of phase velocities depend essentially on the number of periods 
in the burst which was used for measurements by the zero-crossing technique. The obtained regularities enable to compensate part of 
uncertainties of the phases velocity measurement. Moreover it enables to reconstruct the segment of the phase velocity dispersion curve 
in narrow frequency ranges.  
Keywords: Lamb wave, dispersion, phase and group velocity, measurement, finite element. 
 
 
Introduction 

Guided ultrasonic waves are used in many non-
destructive testing (NDT) and material evaluation 
techniques (NDE). The propagation velocity of these 
waves is a key parameter defining efficiency and accuracy 
of these techniques. However, the guided waves possess a 
dispersion phenomenon. This leads to the presence of two 
different propagation velocities – phase and group 
velocities, both dependent on a frequency. The dispersion 
phenomenon is characterized by dispersion curves which 
determine the propagation velocity of different guided 
wave modes at different frequencies. These velocities 
correspond to propagation of harmonic, single frequency 
waves. However, in NDT the pulsed ultrasonic waves are 
mainly used. The waveform of signals usually is some kind 
of burst with the Gaussian envelope and, of course, in the 
frequency domain covers some bandwidth. So, in the 
measurements of the phase and the group velocities the 
question arises not only about the value of the velocity 
itself, but also about the frequency to which it corresponds.  

In most cases the propagation velocity is determined 
using measurement of the propagation time. The delay 
time can be measured using different techniques: signal 
maximum position in the time domain, zero-crossing 
technique [1,2], cross-correlation or optimization based 
[3].  

The objective of the work presented is to investigate in 
detail the Lamb wave velocity measurement technique 
based on the zero-crossing approach and using the signals 
obtained by finite element modelling.  

The model 
The Lamb waves possess infinite number of modes, 

however in most cases only lowest modes are exploited. 
The asymmetric A0 mode of Lamb wave propagating in a  
2 mm thickness aluminium plate was selected for analysis. 

The segment of dispersion curves of this mode in the 
frequency range 0-500kHz is presented in Fig.1. The 
dispersion curves were calculated assuming that the 
propagation velocity of the longitudinal wave is 

m/s6350=Lc  and of the shear waves is 3100=Tc  m/s. 

 
Fig.1. The dispersion curves of phase (1) and group (2) velocities of 

A0 Lamb wave mode propagating in 2mm thickness aluminium 
plate 

In order to obtain signals necessary for analysis of 
different measurement techniques the 2D finite element 
model of the aluminium plate was created (Fig.2). The 
following parameters of the aluminium plate were used in 
the model: density 3kg/m 2780=ρ , Young modulus         
E = 73.1 GPa, the Poisson’s ratio 3.0=ν . The sampling 
step in the spatial domain was dx=0.1mm and dt=0.15μs in 
the time domain. The A0 mode was excited by attaching a 
tangential force to one of the plate edges (Fig.2). The 
waveform of the excitation signal is presented in Fig.3 and 
the frequency spectrum in Fig.4. As can be seen at - 6 dB 
level it covers the frequency range from 220 kHz up to  
380 kHz. The phase and the group velocities for these 
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frequencies obtained from the dispersion curves are 
presented in Table 1 and in Fig.1. The propagation of the 
Lamb wave was modelled for the time interval up to      
100 μs.  

 
Fig.2. The finite element model for investigation of propagation of the 

A0 mode Lamb wave in aluminium plate 

 
Fig.3. The waveform of the excitation signal  

 
Fig.4. The frequency spectrum of the excitation signal  

Table 1. The of phase and group velocities of Lamb waves in 
aluminium plate at different frequencies 

Frequency, KHz Phase velocity , m/s Group velocity, m/s 

220 1794 2817 

300 1999 2972 

380 2153 3056 
 
The Lamb waves usually are measured by scanning the 

contact type transducer over top surface of the plate. Such 
transducer is sensitive to the normal component of the 
particle velocity of propagating waves. In order to obtain 
the signals as much as possible closer to experimental ones 
the particle velocity at each node of a finite element grid 
corresponding to the upper surface of the plate were 
recorded. The obtained B-scan image is presented in Fig.5. 
The direct Lamb wave and reflected by the end of the plate 

can be observed clearly. Also it can be seen that phase and 
group velocities are different. The propagation time of the 
phase velocity was estimated using the zero-crossing 
technique. In short it is explained by Fig.6. According to  
this technique some threshold level Uthr is set in advance. 
Using this level the approximate position in the time 
domain of the signal corresponding to the propagating 
wave is determined. In the second step accurately the time 
instants at which the signal crosses the zero amplitude line 
are determined. As it is shown in Fig.6 the four zero 
crossing instants )(),(),(),( 4321 nnnn xtxtxtxt  are 
determined for each signal )(tu

nx , where xn is the 
measurement positions along the plate, Nn ÷=1 , N is the 
total number of the measurement positions. The 
dependency of the propagation time measured using the 
first zero-crossing point t1(x) versus the distance is 
presented in Fig.7. As can be seen in some distance 
intervals it increases almost linearly, but then jumps 
sharply down. It is explained by the fact that the phase and 
group velocities are different and the half periods of signal 
with the distance in some sense “moves” inside the signal 
envelop. At the “jump” position the threshold technique 
fits to another period of the signal. The distance between 
two “jumps” is very important because it determines the 
maximal distance at which the phase velocity can be 
measured. The propagation time measured using other 
zero-crossing points t2(x), t2(x) t3(x) possesses similar 
regularities  

 
Fig.5. The B-scan image of the normal component of the particle 

velocity on the surface of the plate  

In general the zero-crossing instants correspond to the 
zero phase of the signal. So, the phase velocity can be 
determined from  

 ( ) ( )
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where m = 1, 2, 3 or 4. However simple application of this 
equation by using measurements at two positions along x 
axis leads to big uncertainties. On the other hand in the 
distance intervals between two “jumps” ] [1−÷∈ kk xxx , the 
propagation time can be approximated by equation 
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where Kk ÷=1 , K is the total number of jumps. So, the 

0Ac was determined by the least-squares method using 
Eq.2. Depending on the number of “jumps” several values 
of cA0 can be obtained, which correspond to different 
propagation distance kx , where ( ) 2/1−+= kkk xxx . 

 
Fig.6. Explanation of the zero-crossing technique. 1 ,2, 3, 4 are the 

zero crossing points used in phase velocity estimation; I,II,III 
are half periods of the signal used in the analysis; Uthr is the 
threshold level 

 

Fig.7. The propagation time versus distance determined using the 
first zero-crossing point.  

 
Fig.8. The propagation velocity of A0 mode Lamb wave measured at 

different distances using different zero-crossing points. 1, 2, 3, 
4 correspond to the number of zero-crossing point in the burst 
of the signal which was used for phase velocity determination 

Moreover, the set of these values }{ ,,0 mkAc  is obtained 
using different zero crossing points (Fig.6). The obtained 
results are presented in Fig.8. 

As can be seen the value of phase velocity obtained 
using the first and the second zero-crossing points 
increases with a distance. The phase velocity obtained 
using the fourth zero crossing point demonstrates opposite 
regularity. Most stable results are obtained using the third 
zero-crossing point. These dependencies have a systematic 
character and probably are related to the dispersion 
phenomena and can be explained by following 
considerations:  

1. The signal is not harmonic, but possess some 
bandwidth; 

2. At the excitation point the components 
corresponding to different frequencies are more or 
less uniformly distributed in the signal (in the time 
domain); 

3. During propagation of the Lamb waves the faster 
components start to concentrates in the front part of 
the signal and slower ones at the end of the signal;  

4. Depending on which part of the signal in the time 
domain is used for phase velocity estimation it will 
correspond not to the central frequency, but to the 
frequency which is concentrating in this part of the 
signal. 

So, the question arise how the redistribution of the 
different frequency components can be detected or 
measured. Analysis in the frequency domain using moving 
narrow window will be not efficient because a narrow 
window in the time domain lead to big uncertainties in the 
frequency domain. One of the ways is to measure 
accurately the duration of each half period in the signal and 
to monitor their variations depending on a distance. As the 
propagation times are calculated according to different 
zero-crossing points, the duration of half periods can be 
determined according to 
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where III,5.0II,5.0I,5.0 ,, TTT  are duration of the first, the 
second and the third half periods of the signal. The 
obtained dependencies are presented in Fig.9. As can be 
seen the duration of the half period varies essentially. 
These variations can be explained by the fact that due to 
difference of the phase and the group velocities each of the 
half periods “moves” inside the signal during wave 
propagation. For a better understanding the obtained 
durations III,5.0II,5.0I,5.0 ,, TTT  can be easily converted into 
the equivalent frequencies by 
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In order to obtain more reliable results the mean values 
( ) ( ) ( )xfxfxf III,5.0II,5.0I,5.0 ,,  of these equivalent frequencies 

were calculated for each interval between “jumps”. The 
obtained results are shown in Fig.9. As can be seen the 
equivalent frequency of the first half period increases at 
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bigger propagation distances. The equivalent frequency of 
the third half period demonstrates opposite regularity - it 
decreases with distance. It can be explained by the fact that 
in the frequency ranges under analysis phase and group 
velocities increase with a distance. So, components 
corresponding to higher frequencies are faster and arrive 
earlier and as a consequence they are more concentrated in 
the first part of the signal.  

 
Fig.9. Durations of different half periods of the signal versus 

propagation distance. 1, 2, 3 are the numbers of the half period  

 
Fig.10. The equivalent frequencies of different half periods of the 

signal; 1, 2, 3 are the numbers of the half period 

The obtained regularities can be exploited for more 
accurate estimation of the phase velocity. As it was shown 
in Fig.6, the estimated phase velocity value depends 
essentially on the number of a zero-crossing point which 
was used. It can be assumed that these values are not just 
scattering the results caused by some uncertainties but 
correspond to different frequencies. In order to test this 
hypothesis the following correction was introduced:  

1. The second zero-crossing point is between the first 
and the second half period and the third zero-
crossing point is between the second and the third 
half period, so the mean values of the equivalent 
frequency were calculated  
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2. These equivalent frequency values were related to 
the corresponding phase velocities and both values 
overlaid on the dispersion curve graph (Fig.11). 

The obtained results demonstrate a very good 
coincidence of the phase velocity values calculated using 
modelled signals and theoretical dispersion curve. 

 
Fig.11. The phase velocities of A0 mode Lamb wave in 2mm 

thickness aluminium plate obtained using simulated signals 
and theoretical dispersion curve 

Conclusions 
It was demonstrated that measurements of the phase 

velocity of guided waves are much more complicated 
comparing to conventional ultrasonic measurements. It was 
proposed to use precise measurement of the duration of 
different half periods of the signal and to use this 
information for compensation of uncertainties of the phase 
velocity measurement. The proposed technique enables not 
only to reduce uncertainties, but also to reconstruct 
segment of the dispersion curve. 
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L. Mažeika, L. Draudvilienė, E. Žukauskas 
Dispersijos įtakos Lembo bangų fazinio ir grupinio greičio 
matavimams tyrimas 
Reziumė 

Atliktas dispersijos įtakos nukreiptųjų bangų fazinio ir grupinio 
greičio matavimams tyrimas. Naudojant Lembo bangas ultragarsiniuose 
neardomuosiuose bandymuose, svarbu turėti tikslius duomenis apie šių 
bangų greitį tiriamajame objekte. Lembo bangų greičio matavimo 
rezultatų tikslumą apsunkina šių bangų fazinio ir grupinio greičio 
priklausomybė nuo dažnio. Šiai įtakai nustatyti buvo ištirtas fazinio ir 
grupinio greičio matavimo metodas, pagrįstas sklidimo laiko matavimu 
naudojant perėjimo per nulį būdą. Tyrimo metu buvo naudojami signalai, 
gauti baigtinių elementų metodu modeliuojant Lembo bangos A0 modos 
sklidimą 2 mm storio ir 200 mm ilgio aliuminio plokštelėje. Bangoms 
žadinti buvo naudojamas įprastas ultragarsinių neardomųjų bandymų   
300 kHz Gauso amplitudės signalas. Tyrimais nustatyta, kad skirtingų 
signalų periodų trukmė kinta bangai sklindant plokštele ir tai sąlygoja 
rezultatų priklausomybę nuo matavimams naudoto signalo periodo 
bendrajame vietos signale. Nustatytieji dėsningumai ne tik įgalino 
sumažinti vidutinės išmatuotos  fazinio greičio vertės neapibrėžtį, bet ir 
atkurti dispersinės kreivės segmentą šiame dažnių diapazone. 

Pateikta spaudai 2009 12 11 

0 20 4
0

6
0

80 100 120 140 160 180 x, mm1.5 

1.6 

1.7 

1.8 

1.9 

2

2.1 

2.2 

2.3 
1

2 

3 

T0.5, μs 

0 50 100 150 x, mm
270 

280 

290 

300 

310 

( )xf 5.0 ,kHz 

1

2

3

250 300 f, kHz
1800

1850

1900

1950

2000

2050

2100

2150

cA0, m/s

275 325 

Theoretical dispersion curve

Obtained second 
zero-crossing point

Obtained third zero-
crossing point 


