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Abstract: 

Objective of this study was to compare the simulated ultrasonic fields of rectangular transducer obtained by two different 
techniques. The fields of elementary rectangular transducers were obtained by means of two different impulse response methods (FMIR 
and LWIR). Ultrasonic fields in a transmission mode excited by a Gauss shaped signal of 10MHz and 5 MHz transducers with different 
dimensions (length 5 mm, width – 2 mm, 1 mm and 0.7 mm) were simulated. In order to classify methods performance duration of 
calculations were measured. The performed simulations show that in a near field zone the results obtained by both methods match very 
well, but with the distance from the transducer the  normalized root mean squared deviation increases, but never exceeds 10%. 
Calculations performed by the FMIR method are about 2.5 times faster compared to the LWIR method. In the FMIR method dynamic 
sampling in the time domain is used, this enables to keep non-increasing uncertainty versus the distance from a transducer plane 
contrarily to the LWIR method the uncertainty of which increases with a distance. 
Keywords: simulations, ultrasonic field, radial array. 
 
 
Introduction 

Calculations of the acoustic fields radiated by 
rectangular ultrasonic transducers have been a subject of 
numerous investigations [1-8], however main disadvantage 
of these methods is the fact that they are relatively slow, 
mainly due to the need of small sampling steps in space 
and time domains at high frequencies. The impulse 
response approach was used for calculation of acoustic 
fields of rectangular transducers also by several authors 
[3,4,8]. In these works two different impulse response 
methods were investigated. One of the methods was 
implemented using Lockwood and Willete [4] (LWIR) 
approach and the second one was fast modification of 
impulse response (FMIR) method described in [9].  

The objective of the present paper is to compare two 
different impulse response methods and to estimate 
reliability of the results obtained by these methods.  

The fast technique for calculation of ultrasonic 
field of rectangular transducer method approach 

In many articles [1,8-10] it was shown that in the case 
of piston like vibration of the transducer surface the pulse 
response ( )zyt,xh ,,  at a given time and observation point 
is proportional to the angle of the arc created by circular 
equidistant lines intersecting with the transducers face 
(Fig. 1). Distribution of the acoustic pressure can be found 
from the expression 

 ( ) ( ) ( )tu
t
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where ρ is the density of the medium, u(t) is the waveform 
of the particle velocity of the transducer surface and the 
symbol ⊗ denotes convolution operation.  

In order to calculate the impulse response ( )zyt,xh ,, of 
the ultrasonic field generated by a transducer at some space 
point P(x,y,z) it is necessary to find out the angles of the 
arc created by equidistance lines intersecting the with 
transducers surface at each time instance. In work [9] and 
many others it was demonstrated that for a circular 

transducer these angles can be found analytically. In the 
case of numerical solutions it can be done for any arbitrary 
shape of a planar transducer [8, 10], including the 
rectangular transducer. 

The meaning of these equidistant lines for the case of 
the rectangular transducer is explained in Fig. 1. There can 
be an unlimited number of the equidistant lines 
corresponding to the time instances [ ]21, ttt∈ , crt /11 =  
corresponds to the arrival time of the waves generated by a 
closest elementary segment of the transducer surface and 
correspondingly crt /22 =  to the farthest. The total 
number of these lines used in the calculation depends on 
the sampling interval in the time domain tΔ . 

 

Fig. 1. Explanation of the equidistant lines for the case of a 
rectangular transducer. 

It is easier to calculate the angle of the arc intersecting 
with the surface of the transducer in polar coordinates with 
the centre at the point P projection (Fig. 2). 

Then the velocity potential can be expressed as 
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where N(t) is the total number of arc segments for the 
observation point ( )zyxP ,,  intersecting with transducers 

boundaries for a given time instant, ( ) ( )tΦ i
1  and ( ) ( )tΦ i

2  is 
in and out angles for the equidistant line corresponding to 
the time instant t. It is necessary to state that the 
equidistant line for an arbitrary selected point can cross the 
contour of the transducer several times. In the case of the 
rectangular transducer the maximal possible number of 
cross-section points is 8. This procedure must be repeated 
for all time instant [ ]21, ttt∈ . 
 

 

Fig. 2. Explanation of in and out arc angles Φ1 and Φ2 used in 
calculation of velocity potential. 

However this rather simple approach possesses one 
very essential disadvantage. The relatively high 
frequencies (up to 10MHz) lead to a rather small sampling 
step in space and time domains and as a consequence to the 
huge number of points at which the calculation should be 
performed. So, calculation of the whole field requires a 
long time of processing. Additionally, the time instants t1, 
t2 of the arrival wave from the closest and the farthest 
points of the transducer surface become closer to each 
other for spatial points situated at bigger distances, that is 
the time interval 1212 ttt −=Δ  reduces with a distance. In 
order keep the same accuracy in the pulse response 
calculation, the sampling step in the time domain should be 
smaller for points situated at bigger distances from 
transducers. In conventional pulse response techniques the 
constant sampling step in the time domain is used. This 
leads to the over-sampling at close distances and as a 
consequence to the long calculation time or loss of the 
accuracy at far distances. 

So, in order to reduce the computation time and to 
increase the model accuracy it was proposed to use the 
sampling step in the time domain dependant on a distance 
as it was described in [1] paper. 

Lockwood and Willete impulse response approach 
According to the method purposed by Lockwood and 

Willete [4] in a rectangular transducer case, the impulse 
response for any field point (x, y, z) can be found. First of 
all for any spatial point (x, y, z) its projection ( )0,, yxO =′  
on the plane of the rectangular transducer is found (Fig. 3). 
The rectangular transducer is subdivided into four 

rectangles, each with the corner at O′. The field of the 
rectangular transducer is obtained by combining the field 
of the four rectangles. If O′ is outside the rectangular 
transducer, the rectangle is enlarged to include it and the 
added rectangles are subtracted.  

 
Fig. 3. Subdivision of the rectangular transducer into four rectangles. 

The spatial impulse response is expressed as: 
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  (3) 
where sk is the length of the short side of the rectangle, lk is 
the length of the long side of the rectangle, H(t) is the 
Heaviside function, czt k =1  is the time of flight of the 
plane wave from the transducer to the observation point; 
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The acoustic field can be expressed as: 

 ( ) ( ) ( )[ ]tzyxhtzyxv
t

tzyxpi ,,,,,,,,, ∗
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= ρ . (4) 

where ρ is the density of the medium, vi is  the particle 
velocity, ∗ denotes convolution.  

The complete field of the transducer is expressed as 
the sum of the fields of the rectangles: 
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Comparison results 
Practical implementations of both methods have been 

made in MatLAB application. This eliminates differences 
that may occur due to different application media.  

The ultrasonic fields of a rectangular transducer were 
calculated in two perpendicular planes x0z and y0z (Fig.5– 
10). The calculations were carried out using the parameters 
given in Table 1. The waveform of the 10 MHz excitation 
signal is shown in Fig. 4.  
Table 1. Parameters used in simulations 

Parameter Value 
The dimension of the transducer in y direction, 
mm  5 

The dimension of the transducer in x direction, 
mm 2; 1; 0.7 

The ranges of field calculation in y and x 
directions, mm -5÷5 

The range of field calculation in z direction, mm 0÷35 
The step in y and x directions, mm 0.1 
The step in z direction, mm 0.1 
The velocity of ultrasound in medium, m/s 1500 
The frequencies, MHz 5; 10 
The sampling in the time domain, ns 1; 2 

Both models gave results that look very similar, only 
in the field obtained by the LWIR method the pattern of 
numerical noise can be observed (Fig. 5b, Fig. 6b and   
Fig. 7b). Also the length of the near field zone is slightly 
shorter compared to the FMIR method. In order to observe 
difference of the results the cross-sections of the fields in 
different planes are presented in Fig. 11 - Fig. 13. The near 
field zones related to the transducer width and length can 
be identified clearly by the amplitude maximums (Fig.8, 
Fig.10). Some “anomaly” in the direct beam field obtained 
by the LWIR technique can by observed in Fig.9 and 
Fig.10.  

 

 
Fig. 4. Normalized 10 MHz signal used for excitation of ultrasound 

transducer in calculations. 

This “anomaly” probably is caused by the insufficient 
sampling interval in the time domain and becomes more 
visible when the transducer x dimension gets smaller.  

 
  a  b 
Fig. 5. Calculated ultrasound field of the rectangular transducer    

5x2 mm in a transmission mode: a - using FMIR method;       
b - LWIR method in y0z plane. The excitation signal 
frequency  10 MHz. 

 
  a   b 
Fig. 6. Calculated ultrasound field of the rectangular transducer    

5x1 mm in a transmission mode: a - using FMIR method;       
b - LWIR method in y0z plane. The excitation signal 
frequency 10 MHz. 

  

  

0 0.1 0.2 0.3 0.4 0.5 0.6-1

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

Time, μs 

N
or

m
al

iz
ed

 a
m

pl
itu

de



ISSN 1392-2114 ULTRAGARSAS (ULTRASOUND), Vol. 64, No.4, 2009. 

 25  

 
  a  b 
Fig. 7. Calculated ultrasound field of the rectangular transducer 

5x0.7 mm in a transmission mode: a – using the FMIR 
method; b – the LWIR method in y0z plane. The excitation 
signal frequency 10 MHz. 

 
  a  b 
Fig. 8. Calculated ultrasound field of the rectangular transducer    

5x2 mm in a transmission mode: a - using the FMIR method; 
b – the LWIR method in x0z plane. The excitation signal 
frequency 10 MHz. 

 
  a  b 
Fig. 9. Calculated ultrasound field of the rectangular transducer    

5x1 mm in a transmission mode: a - using the FMIR method; 
b – the LWIR method in x0z plane. The excitation signal 
frequency 10 MHz. 

 
  a  b 
Fig. 10. Calculated ultrasound field of the rectangular transducer 

5x0.7 mm in a transmission mode: a - using FMIR method;    
b – the LWIR method in x0z plane. The excitation signal 
frequency 10 MHz. 
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It may be noted that in the near-field zone (Fig. 11) 
located close to the transducer surface, the results obtained 
by both methods overlap very well, however the difference 
increases for bigger distances (Fig. 12 Fig. 14). 

The comparison shows that the LWIR method, 
demonstrates similar problems as the basic FMIR method 
without optimization, e.g. some systematic error in the area 
of transducer projection (“inside” the direct beam) which 
can be observed in the cross-section perpendicular to the 
transducer axis (Fig.12) and in cross-sections along the 
transducer axis (Fig. 13). The proposed dynamic sampling 
frequency used in the FMIR technique enables to avoid 
these errors as it is demonstrated by a smooth increase of 
the field in the boundary region between “inside” and 
“outside” of the direct beam.  

 
Fig. 11. Normalized acoustic pressure distribution of the 5x2 mm 

transducer obtained by FMIR and LWIR methods at             
z= 5 mm; 10 mm when x= 0 and y= -5÷5 mm, the frequency   
10 MHz.  

 
Fig. 12. Normalized acoustic pressure distribution of the 5x2 mm 

transducer obtained by FMIR and LWIR methods at             
z= 15 mm; 25 mm when x= 0 and y= -5÷5 mm, the frequency 
10 MHz.  

For estimation of differences between the results 
obtained by FMIR and LWIR methods, the global 
normalized root mean squared deviation was calculated for 
calculated field in different cross-sections according to,  

( )
%100max

1

2

×

−

=
∑
=

g
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i
LWIRFMIR

g P
n

pp

s
ii

, (6) 

where pFMIRi is the maximum peak to peak pressure value 
at i-th spatial point calculated by the FMIR method, pLWIRi 
is the maximum peak to peak pressure value at i-th spatial 
point calculated by the LWIR method, n is the number of 
elements used for calculation of deviation, Pg max is the 
global maximum of peak to peak value of the acoustic 
pressure. 

 
Fig. 13. Normalized acoustic pressure distribution of the 5x2 mm 

transducer obtained by FMIR and LWIR methods at            
z= 0÷35 mm when x= 0; y= 0 mm; the frequency 10 MHz. 

 
Fig. 14. Normalized acoustic pressure distribution of the 5x1 mm 

transducer by FMIR and LWIR methods at z= 5 mm; 15 mm; 
30 mm when x= -5÷5 mm; y= 0 mm; the frequency is 10 MHz. 

However, in cross-sections that are at further distances 
from the field maximum position and the relative pressure 
level is low, Eq. 6 does not present clearly difference 
between two methods, therefore, the local normalized root 
mean squared deviation is calculated: 
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where Pl max is the maximum peak to peak value of the 
acoustic pressure in the field cross-section under analysis. 
The obtained deviation values are presented in Table 2 and 
demonstrate similar regularities, that is, the difference 
between two techniques is more strongly expressed at 
bigger distances.  

The deviations were calculated separately in different 
transducer beam areas “inside” and “outside” direct beam 
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also (Table 3). The “outside” direct beam deviations are 
less than 1.5%, but “inside” deviations can be up to one 
order bigger. This demonstrates that there are some 
systematic errors in the LWIR technique inside the direct 
beam area.  

In order to evaluate the calculation speed, the 
modelling time was measured in each case (Table 4). The 
version of the FMIR method which exploiting dynamic 
sampling was used. The modelling using LWIR method 
was performed using two different sampling intervals in 
the time domain. The duration of the first one was optima 
for the FMIR method at close distances, the second one 
optimal at the furthest spatial points from the transducer 
plane.  

Table 2. Local and global normalized root mean squared deviations in 
different cross-sections of calculated acoustic field planes, the 
frequency 10 MHz. 

Coordinate z, mm sg (global), % sl (local), % 
5 0.89 1.13 
10 2.51 2.52 
15 3.92 4.27 

y0z plane transducer 
5x2 mm 

25 5.24 6.87 
5 0.51 0.69 
15 0.96 3.16 x0z plane. transducer 

5x1 mm 30 0.97 3.45 

Table 3. Normalized root mean squared deviations in different spatial 
sections according to transducer boundary projections, the frequency 
10 MHz 

Coordinate z, mm 
sg outside 
transducer 

projection, % 

sg  inside 
transducer 

projection, % 
5 0.25 1.24 

10 0.51 3.54 
15 0.72 5.53 

y0z plane 
transducer 5x2 
mm 

25 0.89 7.39 
5 0.21 2.36 

15 0.53 5.25 
x0z plane. 
transducer 5x1 
mm 30 1.33 3.56 

Table 4. Simulation times of acoustic fields FMIR and LWIR methods 
x= -5÷5 mm; y= 0 mm; z= 0÷35 mm generated by the rectangular 
5x2mm transducer, the frequency 10 MHz, the number of spatial 
points 17.9 k. 

Method Sampling interval Δt, ns Simulation time, s 

FMIR 
Dynamic: 

1 ns, at z= 0 mm; 
0.086 ns, at z= 35 mm 

182 

1 ns 471 LWIR 0.086 ns 6919 

Conclusions 
The obtained results of the normalized root mean 

squared deviations show that they are up to ten times 
higher in the transducer direct beam zone, compared to the 
area “outside” the direct beam. This noticeable difference 
occurs due to insufficient sampling in the time domain. 
The FMIR method employs dynamic sampling in the time 
domain that is more accurate comparing to the LWIR 
method.  

It was demonstrated that in average the FMIR method 
is at least 2.5 times faster compared to the LWIR method. 
However, in the case of bigger distances the FMIR method 

is more than 30 times faster if the same accuracy is 
required.  
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M. Gresevičius, E. Jasiūnienė, L. Mažeika  

Ultragarsinių stačiakampių keitiklių sukuriamų laukų skaičiavimo 
metodų palyginimas 

Reziumė 

Ultragarsinių stačiakampių keitiklių laukams modeliuoti naudojami 
metodai turi ir pranašumų, ir trūkumų. Šio darbo tikslas – palyginti 
modeliavimo rezultatus, gautus dviem skirtingais metodais, ir įvertinti šių 
metodų rezultatų patikimumą. Vienas iš metodų yra impulsinės reakcijos 
metodas, kitas - žinomo difrakcinio metodo versija, skirta stačiakampio 
keitiklio laukui greitai apskaičiuoti. Metodams nuodugniai palyginti buvo 
sumodeliuoti skirtingų dažnių ir matmenų keitiklių sukuriami 
ultragarsiniai laukai. Buvo tiriami mažų matmenų stačiakampio 
ultragarsinio keitiklio (ilgis – 5 mm, plotis – 2 mm, 1 mm) sukuriami 
laukai. Keitiklis buvo žadinamas 10 MHz ir 5 MHz dažnio Gauso formos 
signalu, buvo parinkti vienodi laiko ir erdvės diskretizavimo žingsniai. 
Metodų efektyvumui nustatyti buvo matuojami modeliavimo laikai. 
Tyrimo rezultatai parodė, kad metodų skirtumai reiškiasi tolimajame 
lauke, tačiau standartiniai kvadratiniai nuokrypiai neviršija 10 %. 
Naudojant sparčiąją difrakcinio metodo versiją, skaičiavimai atliekami 
apie du kartus sparčiau nei impulsinės reakcijos metodu. Pritaikius šiai 
versijai dinaminį diskretizavimo laike žingsnį, neapibrėžtis tolstant nuo 
keitiklio plokštumos nekinta, priešingai nei impulsinės reakcijos metodo, 
kur neapibrėžtis didėja tolstant nuo keitiklio plokštumos. 
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