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Abstract

The stressed state that emerged on the medial surface of a cylindrical shell, located in the acoustical medium and subjected to the
action of a plane harmonic wave, is studied. The influence of the medium on the flexural stress on the medial surface of the shell is
analyzed. The solution of the plane problem is reduced to computational formulae and charts. Moreover, computations are performed

with respect to both low- and high-frequency vibrations.
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Introduction

In the present-day developing technological processes,
architectural structures, which acquire a shape of a
cylindrical shell, are affected from outside by acoustical
waves. External audible and inaudible sound waves, which
meet on their way the cylindrical shell surfaces, excite the
reflected waves that are radiated to the environment. In our
works [1, 2, 3] it was studied how the sound waves affect
the cylindrical shells from inside.

Here, an analysis was made how the walls of the
cylindrical shell are affected by the propagation of a wave
in the pipe in the diffusion and plane wave fields.
However, in the present-day development of technology, it
is necessary to know the dynamic stability of cylindrical
shells when acoustic waves are acting outside of them and
how their fluctuations interact in the given acoustic
medium.

In some works that problem is being solved [1, 3]. An
insignificant number of publications were dedicated to the
issues of interaction of cylindrical shells with the medium.
In the work [1] an axiosymmetrical problem and in [3] the
general (not-axiosymmterical) problem for the cylindrical
shell [2-7] are investigated

In this work, an analysis is given of the stressed state
of the cylindrical shells.

Interaction of acoustical waves with a cylindrical
shell

Statement of the problem. The plane harmonic
longitudinal wave with a circular frequency @ is
propagating in an infinite acoustical medium and meeting a
cylindrical shell. The incident wave produces the reflected
and radiated waves. The potential of the plane longitudinal
wave has the form

o0 = Aei(al_mt), A = const .

()
where o =w/ cll is the wave number, o is the circular

frequency, cll is the speed of the propagation of
longitudinal waves in the acoustical medium.
The Eq. 1 may be presented in the polar coordinates 7,

6 by means of a series [2]
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o0
®° =AY 1,i"J,(ar)cosnGe™ ™ 1y =1,1, =2,n 21, (2)
n=0
where J,(a,r) is the Bessel’s function. The reflected and
radiated waves, the potential of which satisfies the
condition of radiation at » — oo, have the form of

o = ZA,,H,(,D (ar)cosnbe™ " .
n=0

3)

Here, A4, are the unknown coefficients, H ,(11) (ar) isthe

Hankel’s function of the first kind. The total field in the
shell is determined by the potential

o=0"+0", (4)
the hydrodynamic pressure, acting on the shell
oo
Py =—p—, 5
b o ®)

where p is the density of acoustical medium.

Let’s consider the circular isotropic cylindrical shell of
the constant thickness 4, with the radius R, along the axis
of which we will direct the coordinate axis 0Z;. For a plane
problem with the application of the Kirchhoff-Love
hypothesis, the main equations of movement of the shell in
the polar coordinates r, € in the displacements we may
represent in the following form

oot 1 1 0 1-v2 .
U, +| == Uy ———Ig, — phU, )=0,
(12R4 a94 RzJ r (Rz agj 0 Eh (qr F’h I')

(6)

10 1 o2 1-v2 .

—— U, +| ——— U, - - phU, )=0.
[Rz 69) r [Rz 692J 0 Eh (qr ,0 r)

In the case of low vibrations of the resting viscous
compressed medium, we shall write the linearized
equations of the Navier-Stokes movement [8]

DV aT e L5, LSE )=, (7)
ot 20 3
a continuity equation
L% 570, (8)
py O

expressions for determining the components of the tensor
of stresses in rectangular coordinates Z;
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T al) ov;
b= 5 +AV-V+ ,u +—L , )
i %
an equation of state
8—P=a§, ay = const . (10)

op'
Following [3], we obtain the representation for the

vector ¥ and scalars pand p' in the form of

4 22[61// +§ZF3X1 +§x(§xazz)]. an
AT
P= —VvA- —y. 12
Po(3 8tj6tl// (12)
op  po(4 . 0)0?
i:p—g[—m——j—zw. (13)
o ag\3 ot ) ot

In the case of a plane problem for the potentials we get
the following equations;

! 2
1+4V28 A- 1252://:0, (14)
3(10 ot ag ot
a '
——VA =0. 15
(at jll (15)

From Eq. 9 we obtain expressions for determining the
components of the tensor of stresses in the fluid (in the
circular cylindrical system of coordinates) at » = const in
the following form

Prr:—P_}_ﬂ' aﬂ_}.l%_ki +2 'ai,
or r 06 r or
(10v, 0v v,
Pg=u|——L4+—=0_20| 16
ro ﬂ(r 08  or rj (16)

From Eq. 11 we obtain the representation of the
components of the speed vector through the potentials in
the following form:

_ o0y to, 10, 0
U=V e Y=g T
Due to thin-walls of the shell, we shall satisfy the

conditions of the vibrating wall on the medial surface of
the shell

O . an

e 22 (18)

Ot or
U,=v,, Up=uvy, (19)
qr = _Prr + Pb > dp :_B’Q' (20)

In Eq. 6-20 the following notations are introduced:
U,,Ug,q,,9p are the components of the vector of
displacements and the vector of surface forces accordingly,
p is the density of the shell material; v,,vg,P,.,P.9 are

rro»

the components of the speed vector ¥V and the tensor of
stresses Py, po and a — is the density and speed of the
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sound in the fluid at the dormant state; p' and P, — are the

disturbance of density and pressure in the fluid; v' and
u'=pgv' are the kinematic coefficient of viscosity and

the coefficient of viscosity; A’ is the second coefficient of

’

viscosity, in respect of which the relationship A’ = —% U

takes place [9].

Representation of the solution for a cylindrical
shell

We shall represent the displacement of the points of
the medial surface in the form [4]:

o0
_ —iwt
U, = Zan cosnbe ",
n=0

o0
Ug =Y bysinnte . Q1)
n=0
Here, a, b, are the unknown coefficients. The solution
of Eq. 14 and 15, satisfying the conditions of limitedness at

7 =0, will have the form:

0
Y= ZB,,J,, (17) cos nbe™""
n=0

0
7= z C,J,(7or)sin nbe™'
n=0

(22)

where B, , C, are the unknown coefficients,

2

-1
= 0| 4Vza) 7y = ;@
1 =43 ’2_\/_"
ag 3a§ v

In accordance with Eq. 17, for the compounds of speed
we shall obtain

oy =iy

n=0

Vg —ZCOZ

n=0

{ w3 (mr)+ C, Jn(ﬂzr)}comee‘ia’f,

{B 2, () +Cona (nzr)}smnﬁe et

(23)
From Eq. 16 we shall have

Z{ { s o) ”2"”(””))—Pb@an(mr)}+

c Zulmn[

n

Mo, (nor)+ J,, (nzr)]}cosnee_im’
2
By = Z{ I»UC')” nlrJn(nlr) J (nlr))]+

Cn“—;w[n%erZ (nor) =/, (npr)+ an,z(nzr)]}Sinnee_iwt
r

24
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- 4 X3 "
P= 2 Bn{_gﬂlw|:7712‘]n(771r)+ 711 ‘]n(nlr):|+
n=0
4 . n? ,
g,ula)r—2+poa)

2 JJH (mr)} cosnbe ™.

We shall note that here the derivatives are taken by
argument. The pressure on the front of a plane wave has
the form:

o0

P, = poia)z [Alni”Jn (ar)+ A,,H,(,l)(ar)]cos nbe' . (25)
n=0

Determination of the intensive state in the shell

We shall determine the efforts and moment through
displacements U,.,Uq in the form of

v o Eh 113Uy n? 62Ur+U
" 1vER| 80 " 12rR%*l ee* )|
D U
M, U+ |, 26)

R 06>
where E is the Young’s modulus, D is the cylindrical
rigidity, v is the Poisson’s ratio.

We shall define tangential (membranous) and flexural
stresses by a formula:

T) N r oM
o) =ZE, o T @7
and maximum stress in the shell
ol =oT 461, 28)

Particular cases

a) Let’s consider the case where vacuum exists in side

of the shell. Hence, it follows that 4’ =0, pj=0. Then

P =pPrg=r=0. (29)
The boundary conditions (18), (20) are transformed to

U, _o»

r = , = b N = 0 . 30
o o drTrhs do (30)
b) If inside the shell the ideal fluid is contained, then
u'=0.
Then
, 0
B,=-P, Py=0, PZ—PO%- 31)

Therefore, the problem is to be solved under the
following boundary conditions:

U, &b

a _5’ Urzvra UﬁzoaquP"—Pb: q9=0-(32)
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Numerical computations and analysis

Numerical computations are carried out for a
cylindrical shell, filled with several types of media and air
is taken as an acoustical medium. In this case, the medium
with water is taken as an acoustical medium and inside the
shell the medium is air. In the second case, the acoustical
medium is air; inside the shell is the medium in the form of
water. Moreover, both cases are calculated at relatively
low @ =200, 250, 300 and high » =3000, 4000, 5000
frequencies.

Charts of dependence of tangential and flexural
stresses from the angular coordinate 6 at the values
® =250 and @ = 5000 rad/s were obtained.

We shall note that stresses are defined by an
expression

o= (R + iJ)e_m’[ =VR? +J21_i(a)t_7), y= actg% ,
Therefore

O'g) = (ReagT) + UmagT))e_iwt ,

aéN) = (Reo—gv) + iJmO'éN))e_iw .

Since the stress is the actual value, we shall define the
maximum principal stress in the following way

o) = lrlotf 4 o s oty oOF

Hence, the real parts of stresses correspond to the
primary — instant =0, and the imaginary parts to the
instant of time through the quarter of the period ¢ = 7/4
where T'=2m/w.

The data of the material of the shell are as follows:
R=10cm, h=0.1 cm, E= 2-10° kg/em®, v=0.3.

Fig. 1 and 2 show the dependences of tangential and
flexural stresses on the angular coordinate at the action of
acoustical waves on the cylindrical shell, filled with
viscous compressed medium. Fig. 1 corresponds to the first
case, and Fig. 2 to the second case, we shall note that in
Fig. 1 (1-8) the curve 1 relates to air; on Fig. 2 (1-8) to
water.

Conclusions

While analyzing the results it is possible make the
following conclusions:

— if the acoustical medium is the medium of the type
water, the maximum principal stress on the medial surface
of the shell, created by the plane harmonic wave is much
bigger then when the acoustical medium is air. This
affirmation remains valid at relatively low and at high
frequencies of vibrations;

— with the increase of the frequencies on a cylindrical
shell the flexural stress is increasing;

— at a low frequency the flexural stress on the medial
surface of shells is relatively low;

- density also has an influence on the stressed state of
shells.
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Fig. 1. Dependence of tangential and bending stresses on angular coordinates O at the action of an acoustical wave, with air present in the

cylindrical shell
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Fig. 2. Dependence of tangential and bending stresses on angular coordinates @ at the action of an acoustical wave, with the cylindrical shell
filled with water
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D. Guzas
Akustiniy bangy poveikis cilindriniam kevalui
Reziumé

Dabartiniai statiniai, pavyzdziui, bokstai, vamzdynai ir Kiti
cilindrinés formos kevalai su skirtingomis akustinémis terpémis viduje ir
iSoréje, turi tikti naujoms technologijoms ir atitikti juy reikalavimus.

Nagrinéjamuoju atveju reikia zinoti, kaip akustinés bangos veikia
cilindrinio kevalo pavirsiu. Same darbe tyrinéjamos plokscios harmoninés
bangos, sklindanéios tam tikru apskritiminiu dazniu akustingje terpéje,
poveikis cilindrinés formos kevalui. Krintanti banga suzadina atspindzio
ir sklaidos akustines bangas, kurios suzadina virpesius kevalo
konstrukcijoje. Sis poveikis gali bati {vairus. Tyrimo rezultatai parode,
kad tangentiniy ir lenkimo jégu jtaka veikiant akustinéms bangoms
priklauso nuo kampiniy koordinadiy €. Esant Zemiems daZniams,
lenkimo jégu poveikis cilindriniam pavirSiui yra nedidelis. Didéjant
dazniams, $iy jéguy poveikis didéja. Akustinés bangos, sklindancios
vandens terpéje, poveikis yra didesnis negu sklindancios dujose (ore) ir
priklauso nuo terpés tankio.
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