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Abstract 

The stressed state that emerged on the medial surface of a cylindrical shell, located in the acoustical medium and subjected to the 
action of a plane harmonic wave, is studied. The influence of the medium on the flexural stress on the medial surface of the shell is 
analyzed. The solution of the plane problem is reduced to computational formulae and charts. Moreover, computations are performed 
with respect to both low- and high-frequency vibrations. 
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Introduction 

In the present-day developing technological processes, 
architectural structures, which acquire a shape of a 
cylindrical shell, are affected from outside by acoustical 
waves. External audible and inaudible sound waves, which 
meet on their way the cylindrical shell surfaces, excite the 
reflected waves that are radiated to the environment. In our 
works [1, 2, 3] it was studied how the sound waves affect 
the cylindrical shells from inside. 

Here, an analysis was made how the walls of the 
cylindrical shell are affected by the propagation of a wave 
in the pipe in the diffusion and plane wave fields. 
However, in the present-day development of technology, it 
is necessary to know the dynamic stability of cylindrical 
shells when acoustic waves are acting outside of them and 
how their fluctuations interact in the given acoustic 
medium.  

In some works that problem is being solved [1, 3]. An 
insignificant number of publications were dedicated to the 
issues of interaction of cylindrical shells with the medium. 
In the work [1] an axiosymmetrical problem and in [3] the 
general (not-axiosymmterical) problem for the cylindrical 
shell [2-7] are investigated 

In this work, an analysis is given of the stressed state 
of the cylindrical shells. 

Interaction of acoustical waves with a cylindrical 
shell 

Statement of the problem. The plane harmonic 
longitudinal wave with a circular frequency ω  is 
propagating in an infinite acoustical medium and meeting a 
cylindrical shell. The incident wave produces the reflected 
and radiated waves. The potential of the plane longitudinal 
wave has the form 

 ( ) constAe ti ==Φ − A ,0 ωαχ . (1) 

where Ic1/ωα =  is the wave number,  ω is the circular 

frequency, Ic1 is the speed of the propagation of 
longitudinal waves in the acoustical medium. 

The Eq. 1 may be presented in the polar coordinates r, 
θ by means of a series [2] 
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where Jn(ά,r) is the Bessel’s function. The reflected and 
radiated waves, the potential of which satisfies the 
condition of radiation at ∞→r , have the form of 
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Here, An are the unknown coefficients, )()1( rHn α  is the 
Hankel’s function of the first kind. The total field in the 
shell is determined by the potential 

 *0 Φ+Φ=Φ , (4) 
the hydrodynamic pressure, acting on the shell 

 
t

Pb ∂
Φ∂

−= ρ , (5) 

where ρ is the density of acoustical medium. 
Let’s consider the circular isotropic cylindrical shell of 

the constant thickness h, with the radius R, along the axis 
of which we will direct the coordinate axis 0Z3. For a plane 
problem with the application of the Kirchhoff-Love 
hypothesis, the main equations of movement of the shell in 
the polar coordinates r, θ in the displacements we may 
represent in the following form 
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In the case of low vibrations of the resting viscous 
compressed medium, we shall write the linearized 
equations of the Navier-Stokes movement [8] 
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a continuity equation  
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expressions for determining the components of the tensor 
of stresses in rectangular coordinates Zj 
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an equation of state 
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Following [3], we obtain the representation for the 
vector V  and scalars p and ρ′  in the form of  
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In the case of a plane problem for the potentials we get 
the following equations; 
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From Eq. 9 we obtain expressions for determining the 
components of the tensor of stresses in the fluid (in the 
circular cylindrical system of coordinates) at r = const in 
the following form 
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From Eq. 11 we obtain the representation of the 
components of the speed vector through the potentials in 
the following form: 
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Due to thin-walls of the shell, we shall satisfy the 
conditions of the vibrating wall on the medial surface of 
the shell 
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In Eq. 6–20 the following notations are introduced: 
θθ qqUU rr ,,,  are the components of the vector of 

displacements and the vector of surface forces accordingly, 
ρ is the density of the shell material; θθυυ rrrr PP ,,,  are 

the components of the speed vector V  and the tensor of 
stresses Pij, 0ρ′  and a0 – is the density and speed of the 

sound in the fluid at the dormant state; ρ′  and P1 – are the 
disturbance of density and pressure in the fluid; v′  and 

v′′=′ 0ρμ  are the kinematic coefficient of viscosity and 
the coefficient of viscosity; λ′  is the second coefficient of 

viscosity, in respect of which the relationship μλ ′−=′
3
2  

takes place [9]. 

Representation of the solution for a cylindrical 
shell 

We shall represent the displacement of the points of 
the medial surface in the form [4]: 
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Here, an bn are the unknown coefficients. The solution 
of Eq. 14 and 15, satisfying the conditions of limitedness at 
r = 0, will have the form: 
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where Bn , Cn  are the unknown coefficients, 
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In accordance with Eq. 17, for the compounds of speed 
we shall obtain 
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From Eq. 16 we shall have 
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We shall note that here the derivatives are taken by 
argument. The pressure on the front of a plane wave has 
the form: 

( ) ( )( )[ ] ti

n
nnn

n
nb enrHArJiAliP ωθααωρ −

∞

=
∑ += cos

0

1
0 . (25) 

Determination of the intensive state in the shell 
We shall determine the efforts and moment through 

displacements  θUUr ,  in the form of 
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where E is the Young’s modulus, D is the cylindrical 
rigidity, v  is the Poisson’s ratio. 

We shall define tangential (membranous) and flexural 
stresses by a formula: 
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and maximum stress in the shell  
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Particular cases 
a) Let’s consider the case where vacuum exists in side 

of the shell. Hence, it follows that ,0=′μ  00 =′ρ . Then 

 0=== ppp rrr θ . (29) 

The boundary conditions (18), (20) are transformed to  
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b) If inside the shell the ideal fluid is contained, then 
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Therefore, the problem is to be solved under the 
following boundary conditions: 
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Numerical computations and analysis 
Numerical computations are carried out for a 

cylindrical shell, filled with several types of media and air 
is taken as an acoustical medium. In this case, the medium 
with water is taken as an acoustical medium and inside the 
shell the medium is air. In the second case, the acoustical 
medium is air; inside the shell is the medium in the form of 
water. Moreover, both cases are calculated at relatively 
low ω = 200, 250, 300 and high ω = 3000, 4000, 5000 
frequencies. 

Charts of dependence of tangential and flexural 
stresses from the angular coordinate θ at the values 
ω = 250 and ω = 5000 rad/s were obtained.  

We shall note that stresses are defined by an 
expression 
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Since the stress is the actual value, we shall define the 
maximum principal stress in the following way  
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Hence, the real parts of stresses correspond to the 
primary – instant t = 0, and the imaginary parts to the 
instant of time through the quarter of the period t = T/4 
where T = 2π/ω. 

The data of the material of the shell are as follows: 
R = 10 cm, h = 0.1 cm, E = 6102 ⋅  kg/cm2, 3.0=v . 

Fig. 1 and 2 show the dependences of tangential and 
flexural stresses on the angular coordinate at the action of 
acoustical waves on the cylindrical shell, filled with 
viscous compressed medium. Fig. 1 corresponds to the first 
case, and Fig. 2 to the second case, we shall note that in 
Fig. 1 (1–8) the curve 1 relates to air; on Fig. 2 (1–8) to 
water. 

Conclusions 
While analyzing the results it is possible make the 

following conclusions: 
– if the acoustical medium is the medium of the type 

water, the maximum principal stress on the medial surface 
of the shell, created by the plane harmonic wave is much 
bigger then when the acoustical medium is air. This 
affirmation remains valid at relatively low and at high 
frequencies of vibrations; 

– with the increase of the frequencies on a cylindrical 
shell the flexural stress is increasing; 

– at a low frequency the flexural stress on the medial 
surface of shells is relatively low; 

- density also has an influence on the stressed state of 
shells. 
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Fig. 1. Dependence of tangential and bending stresses on angular coordinates θ at the action of an acoustical wave, with air present in the 
cylindrical shell  
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Fig. 2. Dependence of tangential and bending stresses on angular coordinates θ at the action of an acoustical wave, with the cylindrical shell 
filled with water  
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D. Gužas 

Akustinių bangų poveikis cilindriniam kevalui 

Reziumė 

Dabartiniai statiniai, pavyzdžiui, bokštai, vamzdynai ir kiti 
cilindrinės formos kevalai su skirtingomis akustinėmis terpėmis viduje ir 
išorėje, turi tikti naujoms technologijoms ir atitikti jų reikalavimus.  

Nagrinėjamuoju atveju reikia žinoti, kaip akustinės bangos veikia 
cilindrinio kevalo paviršių. Šame darbe tyrinėjamos plokščios harmoninės 
bangos, sklindančios tam tikru apskritiminiu dažniu akustinėje terpėje, 
poveikis cilindrinės formos kevalui. Krintanti banga sužadina atspindžio 
ir sklaidos akustines bangas, kurios sužadina virpesius kevalo 
konstrukcijoje. Šis poveikis gali būti įvairus. Tyrimo rezultatai parodė, 
kad tangentinių ir lenkimo jėgų įtaka veikiant akustinėms bangoms 
priklauso nuo kampinių koordinačių θ . Esant žemiems dažniams, 
lenkimo jėgų poveikis cilindriniam paviršiui yra nedidelis. Didėjant 
dažniams, šių jėgų poveikis didėja. Akustinės bangos, sklindančios 
vandens terpėje, poveikis yra didesnis negu sklindančios dujose (ore) ir 
priklauso nuo terpės tankio. 
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