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Abstract  
The delay time estimation using zero-crossing technique is widely used in ultrasonic measurements. The measurements of the phase 

velocity of guided waves are more complicated due to the dispersion. Application of zero-crossing technique for the measurements of 
the phase velocities is more complicated due to changes of the waveform of the signals and limited ranges of the measurements base. 
The objective of the work presented was to investigate in more details the influence of different parameters of the zero – crossing 
technique on measurement of the phase velocity of A0 mode of the Lamb waves. Using the signals obtained from the finite element 
modelling of Lamb waves in a 2 mm thickness aluminium plate it was demonstrated that an insufficient sampling frequency can lead to 
the errors in the phase velocity and corresponding frequency estimations. On the other hand it was shown also, that in order to obtain a 
higher equivalent sampling frequency it is reasonable to exploit interpolation. The optimal parameters of the zero-crossing technique 
and necessary steps for phase velocity measurement are presented also.  
Keywords: Lamb wave, interpolation, phase velocity, measurement uncertainties. 
 
 
Introduction 

The Lamb waves are used in various non – destructive 
testing (NDT) tasks: to detect corrosion, the detection of 
non – homogeneities or defects and the estimation of the 
elastic properties of materials. One of the most important 
parameters in these tasks is a propagation velocity. 
However, to measure the propagation velocity of the 
guided waves is complicated due to dispersion and infinite 
number of modes. In most cases the propagation velocity 
of guided waves is estimated using measurement of the 
propagation time. Different techniques, such as signal 
maximum position in the time domain, the zero–crossing 
technique [1, 2, 3], cross-correlation [4] are known and 
used in practice for the delay time evaluation. Most 
accurate are the cross-correlation and the zero-crossing 
techniques used in many ultrasonic applications such as 
distance measurements or ultrasonic gas or liquids flow 
measurements. As was demonstrated in [1], the zero–
crossing technique in application to guided waves gives 
several advantages including possibility to reconstruct 
segment of the phased velocity dispersion curve. However 
some scattering of the results obtained by different 
techniques was observed. One of the reasons for that can 
be the errors caused by the uncertainties of the zero-
crossing technique. 

So, the objective of the work presented was to 
investigate in more details the influence of different 
parameters of the zero – crossing technique on 
measurement of the phase velocity of the A0 Lamb wave 
mode. 

The zero-crossing technique 
The zero-crossing technique is one of the methods 

enabling to evaluate the delay time of propagating waves. 
The main idea of this technique is that using some 
threshold level the half period of the signal exceeding this 
level is determined (Fig.1). 

 
Fig.1. Illustration of main idea of zero-crossing technique  

In the second step the time instance at which the signal 
crosses the zero level is estimated. The main advantage of 
such approach is that this zero-crossing instant in some 
ranges does not depend on the amplitude of the signal. In 
guided wave applications when not one, but several zero-
crossing instants are determined it enables to reconstruct 
the segment of the phase velocity dispersion curves [1]. 
This is a very important feature of the technique, because 
no other delay time measurement techniques enable to do 
this. However, in order to apply it correctly all peculiarities 
of the method should be investigated, possible sources of 
the errors analysed and the expected level of them 
estimated. The zero crossing technique many years was 
widely used even in an analog electronics for ultrasonic 
measurements and later was well known in the numerical 
implementations. However when the signal is digitized 
many questions arise related to different implementations. 
The approach based on just selection of the closest to zero 
sample of the signal possesses a relatively low accuracy. 
The zero crossing point can be determined also using a 
linear interpolation between two closest to the zero points. 
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However in the case of noisy signals it will lead to the 
errors. A more accurate technique is based on the 
polynomial approximation, but the optimal order of 
polynomial and the number of the samples of the signal 
used in approximation should be determined. So, the task 
of the presented investigation is to analyse the influence of 
all parameters of the technique on a final accuracy of the 
phase velocity measurements.  

The delay time measurement using the zero-crossing 
technique with application of the approximation is 
performed in the following steps: 

1. The threshold level Uth is defined; 
2. The first sample of the signal, which exceeds the 

threshold level is found (Fig.2) 

 ( )[ ]{ } argmin1 thn Utun >= , (1) 

where ( )ntu  is the digitized signal, sNn ÷=1 , Ns is the 
total number of samples in the signal; 

3. The samples with the smallest absolute amplitude 
are determined in backward and front directions (in time)  

 ( )[ ]{ } minarg1 ktuk = , 11 2
nNnk T ÷−= , (2) 

 ( )[ ]{ } minarg2 ktuk = ,
211
TNnnk +÷= , (3) 

where NT is the number of samples per period; 
4. The samples in the zones of the zero-crossing are 

approximated using the M order polynomial ( )k
M tP , 
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the front direction, NA is the number of samples used in the 
approximation; as the result the two polynomial are 
obtained ( )k

M tP1  and ( )k
M tP2 ; 

5. The equations  

 ( )
( ) ,0

,0

2

1
=
=

k
M

k
M

tP
tP  (4) 

are solved and the zero – crossing instances t1, t2 are 
determined; 

6. The steps 2 - 5 are repeated, just in the step 2 the 

ranges of the variable n are different s
T NNkn ÷+=

42 , 

and the zero-crossing instants t3, t4 of the next period of the 
signal are obtained. The process is continued until the next 
period of the signal which does not exceeds the threshold 
level. The obtained set of the zero-crossing instances 

.....,, 321 ttt  is used for reconstruction of the dispersion 
curve segment according to the algorithm defined in [1]. 

As can be seen all parameters can affect the accuracy 
of the delay time determination or to cause errors. The 
most important are: 

1. The sampling interval in the time domain dt; 
 

2. The degree of a polynomial used for approximation; 
3. The number of samples NT per period T of the 

signal; 
4. The number of points NA used for approximation. 
 

 
 

Fig.2. The several zero-crossing point of digitized signals 

 
Some of the parameters can be defined just from 

general considerations. The sampling interval dt affects the 
final result directly – the smaller sampling interval enables 
more accurately to determine the zero-crossing instant. In 
general, if the sampling step is small enough, the 
approximation even can not be needed. On the other hand 
if the signal is noisy the approximation can reduce errors. 
Too small sampling step (over sampling) leads to a very 
long signals and as a consequence to non-efficient usage of 
the memory and the processing time of the computer or the 
measurement instrument.  

The degree of the polynomial which should be used 
for approximation can be determined just from a following 
consideration. The third order polynomial probably is the 
best one enabling to imitated sine shape of the signal in the 
zero-crossing zone. The higher order polynomials are 
capable to approximate more complex waveforms, 
however due to this feature they will be more affected by 
presence of the noise and as a consequence will lead to 
bigger errors in the delay time determination.  

The number of samples per period and the number of 
samples used in the approximation are interrelated. It can 
be stated that the approximation should be performed in a 
steep part of the signal including the zero-crossing point 
(Fig.3). If the points corresponding to maximums or 
minimums of the signal will be included into the 
approximation it will lead to bigger errors as these points 
are more affected by the noise. In the case of guided wave 
signals, the amplitudes of different periods in the burst 
changes due to the dispersion (Fig.4). This is another 
reason to avoid approximation of the larger part of the 
signal including zones of the maximums and the 
minimums. On the other hand, the bigger number of 
samples used in the approximation enables to reduce the 
influence of the noise due to integration effect. In order to 
investigate in more details influence of these parameters on 
scattering of the results, the presented below investigations 
were carried out.  
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Fig.3. The parts of the signal used in the approximation  

 
Fig.4. The signals of A0 mode at distance 10 mm (solid line) and        

15 mm (dashed line) from the edge of the plate.  

The finite element model and signals used in 
analysis 

The zero-crossing technique was investigated on the 
modelled signals obtained using a finite element method. 
Propagation of the asymmetric A0 of Lamb wave mode in 
the 2 mm thickness and 200 mm length aluminium plate 
was simulated. The parameters of the aluminium plate 
were used in the model are: the density ρ = 2780 kg/m3, the 
Young modulus E = 71.78 GPa, the Poisson‘s ratio            
ν = 0.3435. The sampling step in the spatial domain was  
dx = 0.1 mm and dt = 0.15 µs in the time domain. The A0 
mode was excited by applying a tangential force to one of 
the plate edges (Fig.5). 

 

 
Fig.5. The finite element model used for investigation of propagation 

of the A0 mode Lamb wave in an aluminium plate 

The waveform of the excitation force was 3 period, 
300 kHz burst with the Gaussian envelope. Propagation of 

the guided wave was modelled in the time interval 100 μs. 
The normal component of the particle velocity 
corresponding to the top surface of the plate was used as 
the set of the signals for analysis. The B-scan image of 
these signals is presented in (Fig.6). 

 

 
Fig.6. The B-scan image of the normal component of the particle 

velocity on the surface of the plate  

It can be estimated that each period of the signal 
consists of 22 samples. The time interval between 
maximum and minimum of the period contains 11 samples 
of the signal. If to exclude the maximal and minimal 
samples, as it was discussed above, it will lead to 9 
samples, which can be exploited in the approximation 
using the third order polynomial. 

Determination of the phase velocity and the 
frequency  

In order to investigate how the number of samples per 
period affects the final results of the delay time 
determination three different cases were analysed: the 
original non-interpolated signals obtained with the 
sampling interval 0.15μs, the signal with one additional 
interpolated point between two samples and with two 
interpolated points. The additional points were obtained 
using the linear interpolation. The number of samples per 
period and the equivalent sampling frequency are 
presented in Table 1.  

 
Table 1. The number of samples per period and the equivalent 
sampling frequency in analyzed cases 

Number of the interpolated points 
between original samples 0 1 2 

Samples per period  22 44 66 

Equivalent sampling frequency 
[kHz] 6,67 13,3 20 

 

The calculated delay times ( ) ( ) ( ) ( )xtxtxtxt 4321 ,,,  
in the case of non-interpolated signals are presented in  
Fig. 7, where four parallel lines can be observed with some 
sharp changes (“jumps”). These changes are explained by 
the fact that waveform of the propagating wave changes 
due to the presence of the dispersion. The first period of 
the burst increases in amplitude and ‘moves’ inside. At the 
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same time the new first period is growing. This can be 
observed in the B-scan image (Fig. 6) and in two signals 
measured at different distances (Fig. 4). However, in Fig. 7 
only general changes of the measured delay times can be 
observed. More important is the delay time difference 

( ) ( ) ( )xtdxxtxt kkk −+=Δ  measured between two 
neighbouring positions, because the phase velocity of the 
propagating wave at some point x can be calculated 
according to 

 ( )
( ) ( )xtdxxt

dxxc
mm

ph
−+

= . (5) 

The delay time difference ( )xt1Δ  calculated for the 
first zero-crossing point in the case of original signals is 
presented in Fig. 8. The duplicated lines show a quite large 
scattering of the results. The question is: is it possible to 
reduce this scattering can not be reduced using interpolated 
signals? In order to get the answer the same delay time 
difference was calculated using interpolated signals. The 
obtained results are presented in Fig. 9. They demonstrates 
that the scattering of the results is reduces essentially.  
 

 
Fig.7. The measured zero-crossing instance versus distance in the 

case of non-interpolated signals 

 

 
Fig.8. The delay time difference ( )xt1Δ  calculated for first zero-

crossing point in the case of original signals.  

 
Fig.9. The delay time difference ( )xt1Δ  calculated for the first zero-

crossing point in the case interpolated signals (two interpolated 
point between each two samaples) .  

In the next stage of the phased velocity estimation the 
mean value of the time difference is calculated for each 
interval between the sharp “jumps”: 

 ( ) ( )∑
=

Δ=Δ
2,

1,

1 m

m

x

xx
k

m
mk xt

N
xt , (6) 

where [ ]2,1, ; mm xx are the intervals of the measurement 
data between two “jumps”, ,1 Mm ÷=  M is the total 

number of the intervals without “jumps”, 
2

2,1, mm
m

xx
x

−
=  

is the mean value of the distance of the interval without 
“jumps” and Nm is the number of the measurements points 
in the interval. Using the average delay time values the 
average phase velocity is calculated 

 ( )
( )mk

mkph
xt

dxxc
Δ

=, ,  (7) 

The obtained average values of the phase velocity in 
the case of original and interpolated signals demonstrate 
(Fig.10) that the difference between them is approximately 
5m/s or 0.25%. 

 
Fig.10. The phase velocity of A0 Lamb wave mode estimated using the 

second zero-crossing point in the case of: 1 - original signals; 
2 - one interpolated point between samples; 3 – two 
interpolated points between samples 
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However these phase velocity values should be related 
to some frequencies, because the phase velocity of the 
guided waves is frequency dependent. This relation is 
determined using the duration of each half period in the 
burst. The duration of each half period in the burst can 
calculated using the same zero-crossing instants tk: 

 ( ) ( ) ( )xtxtxt kkfk −=Δ +1, . (8) 
The obtained duration of the first half period at 

different distances is presented in Fig.11. It can be seen 
that in the case of non-interpolated signals the scattering of 
the results is quite big. However it can be reduced 
essentially using interpolated signals. This can be clearly 
observed in the zoomed part presented in Fig.11b 

 

 
a 

 
b 

Fig.11. The duration of the first half period of the signal ( )xt f,1Δ  

versus distance (a) and the zoomed part (b): 1 –in the case of 
non-interpolated signals; 2, 3 – in the case of one and two 
interpolated point between each pair of samples 

 
The average durations of the half period in each 

interval between “jumps” are estimated according to 

 ( ) ( )∑
=

Δ=Δ
2,

1,
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x

xx
fk

m
mfk xt

N
xt . (9) 

Then the equivalent frequencies of the each half period in 
the burst are 

 ( )
( )mfk

mk
xt

xf
,2

1

Δ⋅
= . (10) 

The frequencies of the first and the second periods in the 
burst can be obtained according  
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The equivalent frequencies ( )mxf12 of the first period in 
the burst versus a distance for non-interpolated and 
interpolated signals are presented in Fig.12. It can be 
observed that there is difference between them 
approximately equal to 3kHz or 1%. This is a quite big 
error in accurate measurements. 
 

 
 

Fig.12. The estimated equivalent frequency of the first period in the 
burst in the case of: 1 – non-interpolated signals; 2 - one 
interpolated point between samples; 3 – two interpolated 
points between samples 

 
As the result of the entire algorithm the set of the 

phase velocities ( ) ,41 , , ÷=kxc mkph  for each zero 

crossing point and the set of frequencies ( ) 31 , ÷=kxf mk  
for each interval between zero-crossing points are 
obtained. As the phase velocities are obtained using some 
zero–crossing point which is between two intervals it is 
reasonable to analyse only the phase velocities obtained 
using middle zero-crossing points ( ) ( )( )mphmph xcxc 3,2, ,  
and relate them to the equivalent frequencies of the first 
and the second period in the burst. These two sets of 
results can be presented as the segment of dispersion curve 
(Fig. 13 and 14).  

In the same figures the theoretical dispersion curve is 
denoted by the solid line. Neglecting the observed earlier 
difference between the phase velocities and the frequencies 
determined using non-interpolated and interpolated signals 
there is no essential difference with respect to theoretical 
curve, just some shift along the dispersion curve. 
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Fig.13. The theoretical dispersion curve (solid line) and the phase 
velocity versus frequency obtained using non-interpolated 

signals: 1- ,2,phc  2 - ,3,phc  

 
Fig.14. The theoretical dispersion curve (solid line) and the phase 

velocity versus frequency obtained using two interpolated 

points between each pair of samples: 1- ,2,phc  2 - 3,phc  

Conclusions 
The analysis of the delay time measurement using the 

zero-crossing technique has demonstrated that: 
1. In the case when a high accuracy is needed, the 

sampling frequency, enabling to obtain at least 40 
points per period of the signal should be used. In the 
case of lower sampling frequencies the interpolation 
can be exploited in order to obtain additional sampling 
points; 

2. In the case of measurements at multiple positions the 
averaging essentially reduces scattering of the results 
even if relatively low sampling frequencies have been 
used. However still some error can be expected in 
estimation of phase velocity and frequency. In the 
analysed case of the A0 Lamb wave mode it was in the 
range of 0.25% for phase velocity and 1% for 
frequency estimations. 

3. In the analysed case of the A0 mode presence of two 
errors in some sense compensates each other and no 
essential differences between results obtained using the 
original and the interpolated signals were observed 
with respect to theoretical dispersion curve. However, 
it does not mean that it can be extrapolated for the case 
of other guided wave modes 
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Signalo perėjimo per nulį metodo nukreiptųjų bangų faziniam 
greičiui matuoti tyrimas 

Reziumė 

Naudojant Lembo bangas tiek neardomuosiuose ultragarsiniuose 
bandymuose (NDT), tiek medžiagos savybėms nustatyti (NDE), svarbu 
tiksliai išmatuoti šių bangų greitį. Šiam tikslui naudojami įvairūs 
suvėlinimo laiko matavimo metodai. Vienas iš jų paremtas sklindančio 
signalo perėjimo per nulį laiko momento matavimu. Šio darbo tikslas 
buvo detaliai ištirti Lembo bangų faziniam greičiui matuoti naudojamo 
metodo tikslumą ir parametrus. Tyrimo metu buvo naudojami baigtinių 
elementų metodu gauti Lembo bangų A0 modos signalai. Buvo tiriama 
perėjimo per nulį metodu gautų matavimo rezultatų sklaidos 
priklausomybė nuo signalo diskrečiųjų taškų skaičiaus per periodą, 
aproksimuojamo polinomo laipsnio ir aproksimuotų naudojamų taškų 
skaičiaus. Nustatyta, kad labiausiai tinka aproksimacija trečiojo laipsnio 
polinomu, o didžiausią įtaką rezultatų sklaidai turi taškų skaičius per 
periodą. Jo neįvertinus arba jį netinkamą parinkus, rezultatų sklaida gali 
labai padidėti. 
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