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Abstract 

This paper presents an analysis of quasi–electrostatic charge density distribution of the surface acoustic wave (SAW) planar 

interdigital transducer (IDT). Approximation is realized  using Chebyshev polynomials and Green’s function without transformation in 

the spatial spectrum domain. The analysis method is suitable for a long IDT’s with arbitrary metallization ratios and electrode-polarity 

sequences. It is assessing the nonuniform charge distribution of electrodes, interaction of local electric field, the end effects. It is easy to 

calculate the capacity of each electrode. To reduce errors and duration of calculations for a long IDT as far as possible, it is appropriate 

to refuse from iterative methods and use the analytical expressions of convolutions. The analytic expressions of the convolution the first 

six terms of the Chebyshev polynomial with the Green’s function are obtained. The total error of approximation is found by calculating 

the difference between the solutions for finite and infinite periodic systems. 

Keywords: SAW, interdigital transducer, IDT, quasi–electrostatic charge distribution, Chebyshev polynomial approximation, Green’s 

function, arbitrary metallization ratio. 

 

 

Introduction 

To analyse the quasi–electrostatic charge density 

distribution of surface acoustic wave transducers  (called 

SAW IDT - Surface Acoustic Wave Interdigital 

Transducer) the charge density distribution must be 

calculated counted accurately as possible. Inaccuracy can 

affect on the SAW transducer frequency response and 

adequacy of analysis. The calculations complicate the fact 

that charge density increases sharply on the edge's, as well  

we cannot examine the individual electrode charge 

distribution regardless influence of the neighboring 

electrodes [1, 2]. Real SAW transducer  has hundreds of 

electrodes, whose interactions must be assessed. As a 

result, it dramatically increases computing duration. 

Charge distribution analysis simplifies the use of 

polynomials. Their coefficients are calculated by solving 

the linear algebraic equation systems.  Approximation can 

be realized  using Chebyshev polynomials [3] and the 

method of Green’s function [4, 5]. High accuracy is 

achieved even when using only six terms in the 

polynomial. Here, it  is assessing the nonuniform charge 

distribution of electrodes, interaction, the end effects. It is 

easy to calculate the capacity for each electrode, but such 

approximation errors are still insufficiently explored. Total 

approximation error could be evaluated in comparison with 

the ideal model. To reduce errors and duration of 

calculations as far much as possible, it is appropriate to 

refuse from iterative methods, but to use the analytical 

expressions. 

Quasi-electrostatic charge density analysis 

For approximation of the infinite absolute integrated 

function, as the proximity criterion a standard deviation is 

used. This deviation could minimize, if the function is 

approximated by series, which consists of orthogonal base 

functions. It is considered, that the most appropriate basis 

functions are the Chebyshev polynomial, the weight 

2

11 x−  [3]. Using these, the function is approximated 

as follows polynomial: 
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where ⎟
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2T  is the n –  th order Chebyshev 

polynomial; d is the electrode width; 
n

α – the polynomial 

coefficients. The formula is valid, when the coordinate of 

the center of the electrode 0=

c

x . 

For the transducer analysis the Fourier transform of 

electric charge density distribution is used. The polynomial 

(1) has the convenient expression which described by the 

Fourier transform: 
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where ( )β
n

J  is the n –  th order Bessel function; β is the 

wave number; .1−=j   

The charge density of the electrodes grating (Fig. 1) is 

expressed by the Green's function method: 
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where 
i
a  < x  <

i
b , i = 1,2 ... N; ( )x

j
′σ  is the j – th 

electrode's  charge density distribution; 
T

p
ε  - the dielectric 

permittivity at constant mechanical tension; N - the 

number of electrodes.  The points with coordinates x′  may 

be only the j – th electrode's  area, and the points with 

coordinates x  includes all electrodes. 

 

 

 

Fig. 1 The electrodes grating 

Coordinates must be normalized:  
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where 
i

d  is the  i – th electrode's width; 
j

d , 
j

c  is the j – 

th electrode's width and coordinate of the center;  
i
x , 

j
x  

are free to choose the points in the electrodes area. 

Then from Eq. 1, 3 and 4 obtained of a charge density 

expression of the j – th electrode's: 
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where 
ej

Φ  is the absolute j – th electrode's potential 

value. 

Substituting Eq. 5 to Eq. 3, we get: 
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where ( )x
eei

ΦΦ =  if the points x  are on the i – th 

electrode. For further simplification of the marking, the 

symbol "–" above the normalized coordinates, we will not 

show. 

The sum charges of the electrodes equal zero and from 

Eq. 5 and 6 we obtain a system of linear equations: 

 

( )
( )

( )

( )
( )

( )⎪

⎪

⎪

⎪

⎩

⎪
⎪

⎪

⎪

⎨

⎧

=′

′−

′

Δ=′′′

∑ ∫

∑

∑ ∫ ∑

=
−

=

=
−

=

+

N

j

l

l

j

l

N

j

ei

l

l

j

ljiij

xd

x

xT

xdxTxxx

1

1

1

2

5

0

1

1

1

5

0

1

,0

1

,,,Ψ

2

1

α

α F

 (7) 

where 
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ei
ΦΔ is the potential difference between the i and (i +1) 

point; i= 1,2 ... N-1 is the line number; j is the column 

number. 

ij
x is calculated according to Eq. 4. 

ei
ΦΔ =0, if the 

point with coordinates x
i
, x

i+1 
is on the same electrode; 

ei
ΦΔ =±1 if the point x

i
, x

i+1 
is on a different electrode. 

In order to solve the system of equations (7), it is 

necessary to choose any six normalized points with 

coordinates 1<
i
x . Symmetrical points are selected with 

the same step 25,0
1
=−

+ii
xx  (i=1, 2, 3). It is also 

necessary to calculate the values of convolutions 
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We obtain the following analytical expressions of 

convolutions Eq. 9: 
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The Chebyshev polynomials are orthogonal, so we get: 
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and from Eq. 7 we find: 
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where 

( )

α

0

j

 are the coefficients that define the electrode 

charge density. These coefficients allow to calculate easy 

the SAW transducer electrode's capacities. 

If the electrode's potential's difference is ± 1V, then j– 

electrode capacity against of the rest electrode system is 

described by the expression: 
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where W is the IDT's aperture. 

Using analytical expressions of convolutions            

Eq. 10–15 by solving (Eq. 7) speeds up the calculations for 

transducers, which contain a large number of electrodes. 

Fig. 2 shows results using Mathcad internal integration 

algorithm and analytic expressions Eq. 10 – 15.  

 

 

Fig. 2. The duration of calculations using Mathcad internal 

integration algorithm (a) and analytic expressions of 

convolutions (b) 

Calculations were performed with a Mathcad installed 

on PC AMD Athlon 64 X2 Dual-Core 4200+, 1 GB of 

RAM, OS Windows XP. 

Approximation error analysis 

In general, approximations possess two types of errors: 

error in the method and calculation errors. Total 

approximation error can be evaluated in comparison to the 

exact solution an ideal model. It can be found only for the 

simplest topologies, for example, consisting of a few 

strips, or for an infinite periodic system of electrodes [2]. 

So the total error of approximation and its dependence 

on the number of neighboring electrodes can be found by 

calculating the difference between the solutions for finite 

and infinite periodic systems. 

Suppose that the active electrode with the potential 

1+=
en

Φ  is located at the center of the infinite array of 

regular electrodes with high values of metallization ratio 

η  (Fig. 3). On both sides of the center electrode the array 

of passive electrodes with potential 0=

± jen
Φ  is arranged. 

Analysis of the charge distribution (Fig. 3) shows that the 

normalized charge density ( )x
en

σ  under a given electrode 

depends only on the dimensions and potential of that 

electrode and its nearest and next–nearest neighbors. In the 

present case increasing the distance from the center 

electrode on both sides, the charge density of neighboring 

electrodes decreases rapidly: local electric fields are not 

influenced by electrodes more distant than the next–nearest 

neighbors. Therefore, to calculate the total error of 

approximation at various metallization ratios η , we must 

take into account the interaction of about 2 – 3 electrodes 

on each side ( 7...5=N ). 

 

Fig. 3. The array of regular electrodes and electric charge density 

distribution. 

The basic transducer (Fig. 4) frequency response is 

given by: 
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where 
s

Γ  is the a constant depending on the material; ω  

is the frequency; ( )ηωσ ,

en

 the Fourier's transform of 

charge density distribution; v  the SAW velocity; 

)/( add +=η  the metallization ratio. 

 

 

Fig. 4. Basic interdigital transducer 

 

For longer transducers we can ignore end effects and 

assume that the charge distributions for all electrodes are 

equal ( )ηωσ ,

e

. Considering this (Eq. 19) can be written: 

 

( ) ( ) ( )

( )

( )

.1

,

1

1

2

1

0

2

1

0

∑

=

−−

−×

×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

N

n

nL

v

j

n

n

esA

g

ea

WjH

ω

ηωσ

ω

ω

ωω G

 (20) 

This expression consists of three parts: 
0

A  is the 

constant, ( )ηω,G  is the frequency response of the 

electrodes, ( )ωjH
T

 is the frequency response of 

transversal filters. These are respectively equal to: 
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To estimate error, the frequency responses of the 

center electrode for finite (approximated solution ( )ηω,

~

G ) 

and infinite (exact solution ( )ηω,G ) basic transducers can 

be compared. Then the absolute error of the frequency 

responses ( )ηωε ,

M
 can be expressed: 
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where 

2

1−

=

M

m , ...,5,3,1=M is the harmonic number; 

M

M

=

0
ω

ω

; ( )πηcos
m

P  is the Legendre polynomial; 

( )( )2cos1 πη+K  is the complete elliptic integral of the 

first kind.  

Investigations of these errors are shown in Fig 5 and 6. 

 

 

Fig. 5. The frequency spectrum of charge density of the electrode 

 

Conclusions 

This paper presents analysis of quasi electrostatic 

charge density distribution of the interdigital transducer. 

The Green's function method and polynomial 

approximation are applied for calculating the charge 

density on the IDT electrode surfaces. The method is 

suitable for a long IDT with arbitrary metallization ratios 

 

Fig. 6. The absolute error of the frequency responses 

and electrode polarity sequences. It is assessing the 

nonuniform charge distribution of electrodes, interaction of 

local electric field and the end effects. It is easy to 

calculate the capacity of each electrode. To reduce errors 

and duration of calculations for a large IDT as much as 

possible, it is appropriate to use the analytical expressions 

of convolutions. The total error of approximation was 

found by calculating the difference between the solutions 

for finite and infinite periodic systems. 
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A. Janeliauskas 

Planariojo sunertųjų elektrodų keitiklio kvazielektrostatinio krūvio 

pasiskirstymo analizė 

Reziumė 

Pasiūlytas kvazielektrostatinio krūvio tankio pasiskirstymo sunertųjų 

elektrodų keitiklyje analizės metodas, kuriam nereikalinga transformacija 

į erdvinio spektro sritį. Keitiklio elektrodų paviršiaus krūvio tankiui 

apskaičiuoti pasinaudota Grino funkcija ir aproksimacija Čebyševo 

polinomais. Analizės metodas tinka sunertiesiems keitikliams su daugeliu 

elektrodų, esant įvairioms metalizacijos koeficiento reikšmėms ir 

elektrodų poliarumui. Jis įvertina krūvio pasiskirstymo netolygumą, 

sąveiką su lokaliuoju elektriniu lauku ir supaprastina kiekvieno elektrodo 

talpos skaičiavimą. Skaičiavimų paklaidai sumažinti ir skaičiavimų laikui 

sutrumpinti pasiūlyta atsisakyti iteracinių metodų ir naudoti analitines 

konvoliucijų išraiškas. Išvestos šešių pirmųjų Čebyševo polinomo narių ir 

Grino funkcijos konvoliucijų analitinės išraiškos. Pateikti krūvio tankio 

aproksimacijos paklaidos įverčiai. 
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