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Abstract 

Guided ultrasonic waves have many useful properties that can be exploited for non-destructive testing (NDT) and structural health 

monitoring (SHM) applications. However, much information and analysis regarding the generation and propagation of these waves is 

needed before automatic processing and analysis techniques can provide useful information for reliable fault monitoring. Moreover, the 

knowledge of dispersion characteristics is crucial for the optimization of sensor networks in terms of sensor placement and number of 

sensors. On that account, the present work introduces a higher order plate theory for modelling disperse solutions in viscoelastic fibre-

reinforced composites. This approach offers a higher computational efficiency and simplicity in comparison to traditional exact 

elasticity methods, while providing an adequate description of the structure's global response in the low frequency range which is the 

most used in Lamb wave applications. The proposed method was applied to several examples in order to obtain numerical results in 

elastic and viscoelastic anisotropic plates. Some comparisons to experimental data are presented, and the effectives and limitations of 

the method are discussed.  
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1. Introduction 

Guided ultrasonic waves are a valuable tool in order to 

get information regarding the origin and importance of a 

discontinuity in a structure for a longer safe life and lower 

operation costs [1]. Depending on the material attenuation 

and geometric beam spreading effects, guided waves are 

able to propagate over relative long distances, interact 

sensitively with and/or being related to different types of 

defects like e.g. delaminations, corrosion damage, etc. 

However, it is only possible to benefit from these 

advantages once the complexity of guided wave 

propagation are disclosed. Generally, there are two ways to 

obtain such complex dispersion characteristics. The first 

strategy is based on common experimental time-delay 

measurements where piezoelectric transducers are attached 

to a structure and play the role of either actuator or sensor. 

A second approach is based on different modelling 

approaches, where material constants are measured by 

means of different identification or material testing 

techniques and then fed into an analytic or finite element 

model to extract the relevant information. The situation 

considered in this paper is representative of the latter case. 

The modelling of wave propagation in multilayered 

anisotropic structures has been extensively studied by 

several researchers and a considerable amount of literature 

has been published on this topic [2]. Analyzing guided 

waves in these structures is often categorized into three 

methods. There are methods based on exact three 

dimensional elasticity, waveguide finite element methods 

and laminated plate theories of different orders. Exact 

methods are based on the superposition of bulk waves that 

include the popular matrix based methods [3]. Waveguide 

finite element methods have appeared for modelling the 

guided wave propagation numerically as an alternative to 

exact methods by using a finite element discretization of 

the cross-section of the waveguide [4]. A different 

alternative providing simplicity and low computational 

cost in comparison to other techniques are laminated plate 

theories. These theories expand the displacement fields in 

terms of the thickness to any desired degree and reduced 

the 3-D continuum problem to a 2-D problem. There are 

many papers dealing with plate theories and their 

applications; some notable work in this field is given by 

Reddy in [5]. The present work proposes a third order plate 

theory that can approximate five symmetric and six 

antisymmetric Lamb wave modes.  Here, the two classical 

models of viscoelastic attenuation are implemented and 

discussed. Previous related work to the one proposed here 

using a second order expansion of the displacement fields 

in terms of the thickness was presented by Calomfirescu in 

[6]. However, this work was restricted to the analysis of 

just the fundamental modes of propagation and the use of 

one model of attenuation for computational reasons. The 

motivation for expanding the displacement field up to the 

cubic term in the thickness is to provide better kinematics 

and accurate interlaminar stress distributions [7]. 

Moreover, the complex root finding algorithms needed 

with the exact methods are not required here since 

analytical solutions can be obtained and reduce to the 

solution of simple polynomials. Since the use of composite 

materials has extensively increased in the design of 

existing engineering structures, what also increases the 

analysis complexity of such structures, this poses a 

necessity for fast modelling tools that can be used for a 

rapid and reliable analysis.  

2. Material damping models for wave propagation 

The mathematical modeling of viscoelasticity using 

ideas from elasticity has attracted the attention of a large 

number of investigators over the past century. In order to 

account for material damping, the stiffness matrix is 

represented by a complex quantity. The real part C of this 
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complex term relates to the elastic behaviour of the 

material and defines the stiffness. The imaginary 

component η relates to the material viscous behaviour and 

defines the energy dissipative ability of the material. Two 

models are often used to describe viscoelastic behaviour. 

The first model is called the hysteretic model whose 

complex stiffness matrix is given by 

 ηiCC +=

~

.  (1) 

The hysteretic model assumes no frequency 

dependence of the viscoelastic constants. The second 

model is the Kelvin-Voigt model and assumes a linear 

dependence of the viscoelastic coefficients. The complex 

stiffness matrix is expressed as 

 η
ω

ω

~

~

iCC += ,  (2) 

where ω is the angular frequency and ω~  is the frequency 

of characterization. The influence in the attenuation 

predicted by both methods for the fundamental modes of 

propagation is depicted in Fig. 1. The characterization 

frequency is 2 MHz. 

From the previous picture it can be clearly seen that 

the attenuation is a linear function of the frequency in the 

case of the hysteretic model and a quadratic function of the 

frequency in the case of the Kelvin–Voigt model. 

Additionally, both models are just coincident in the 

frequency of characterization and away from this point, the 

deviation in the prediction of both models is noteworthy.  
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Fig. 1. Comparison of attenuation between the hysteretic and Kelvin-

Voigt models as a function of frequency. 

3. Mathematical framework for the plate theory 

The model considers a linearly viscoelastic, non-

piezoelectric layer of material subjected to a complex 

stress system in three dimensions. The material is 

considered to have a monoclinic symmetry. Fig. 2 depicts 

the definition of stress resultants (N, M, Q) in the three 

dimensional system for a given propagation direction θ and 

fiber orientation φ. 

 

 

 

Fig. 2. Complex stress system in three dimensions 
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where u, v, and w are the displacement components in x, y 

and z directions, θx and θy represent rotations having the 

same meaning as in the first order shear deformation 

theory [8]. The additional terms expand the displacement 

field. The strain energy of each layer can be represented as 

[9] 
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Additionally, 
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The plate constitutive equations may be derived from 

the strain energy density in the 3-D elasticity theory and 

the linear elastic stress-strain and strain-displacement 
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relations. The equations of motion may be derived from 

the dynamic version of the principle of virtual 

displacement. Consequently, the system can be expressed 

in a matrix form, and by imposing boundary conditions 

and setting its determinant to zero, a characteristic function 

relating the angular frequency to the wavenumber is 

obtained.  For the case of symmetric laminates, the system 

of equations can be decoupled into two independent 

systems of equations for the symmetric and antisymmetric 

modes of propagation. A comparison between exact 

solutions and a similar elastic third order plate theory is 

provided by Wang and Yuan in [10]. However, this paper 

does not document the relevant results needed for the 

calculation of the dispersion relations and uses different 

shear correction factors to the ones provided here. A 

complete description of the numerical strategy for the 

tracing of the dispersion solutions is presented in [11]. The 

complete analytical expressions are given in the appendix 

of this paper. 

4. Results 

The proposed viscoelastic plate theory formulation is 

applied to several examples including two anisotropic 

elastic plates and two anisotropic viscoelastic plates. 

4.1. Elastic glass fibre reinforced plastic plate 

In order to validate the modelling approach, a case 

study has been conducted on a unidirectional glass-fibre 

reinforced plastic (GFRP) plate. A single-layered specimen 

was selected because of its highly anisotropic character. 

Fig. 3a shows the structure that has the dimensions 800 

mm×800 mm and a thickness of approximately 1.5 mm. 

Nine piezoelectric transducers are attached to the surface 

of the structure with equidistant spacing. The piezo patches 

have a diameter of 10mm and a thickness of 0.25 mm. The 

elastic properties in the principal directions of material 

symmetry provided by the manufacturer are given in  

Table 1. 

The experimental group velocities were determined in 

the defined frequency by means of time-delay 

measurements. Numerical results for the group velocities 

for the fundamental modes of propagation at a central 

frequency of 200 kHz are depicted in Fig. 3b. The wave 

surface for the S0 mode at 200 kHz is shown in comparison 

with some measured values at discrete angular points 

(black circles) in order to validate the analytical model 

with experimental data. It can be seen that the estimated 

group velocity matches the theoretical curve very well, 

demonstrating the effectiveness of the model. 

 

Table 1. Material properties of unidirectional glass fibre reinforced plastic 

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) υ12= υ13= υ23 ρ (kg/m3) 

30.7 15.2 10 4 3.1 2.75 0.3 1700 
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Fig. 3. Propagation modes: a - experimental setup, b - wave surface for the 1.5 mm thick GFRP in vacuum 

 

4.2. Elastic carbon fibre reinforced plastic plate 

A carbon fibre reinforced plastic (CFRP) plate made of 

16 equal layers is analyzed in this section. The stacking 

sequence is [0 90 -45 45 0 90 -45 45]s and the total 

thickness is 4.2 mm. The nominal material parameters of 

the unidirectional layers provided by the manufacturer are 

given in Table 2. Fig. 4a shows the plate of approximately 

500 mm × 500 mm instrumented with nine piezoelectric 

transducers. A 3 cycle tone burst signal with a 60 kHz 

centre frequency was used as the input waveform. The 

piezoelectric transducer number five was designated as the 

actuator. Fig. 4b depicts the signals received by the sensors 

PZT4 and PZT2. In contrast to the previous GFRP plate, 

here it can be observed by checking the times of arrival 

and shapes of the received signals that the studied CFRP 

plate has an evident lower anisotropic behaviour (see also 

Fig. 4c). Furthermore, the fundamental antisymmetric 

mode is more strongly excited than that of the fundamental 

symmetric mode. The modes of propagation were 

identified by means of time-frequency analysis. 

The calculated group velocities at θ=30° are depicted 

in Fig. 4d. It can be noticed that the behaviour of the SH0 

and S0 modes is different from the A0 mode in both the low 

and high frequency zones. In the relatively low frequency. 
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Table 2. Material properties of multilayered carbon fibre reinforced plastic. 

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) υ12= υ13= υ23 ρ (kg/m3) 

155.0 8.5 8.5 4.0 4.0 4.0 0.33 1600 
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Fig. 4. Propagation modes: a - experimental setup, b - recorded signals at the PZT sensors, c - wave surface at 60 kHz, d - group velocity 

dispersion curve. 

 

range the higher the frequency of the A0 mode, the faster 

its group velocity. In an opposite manner for the S0 mode, 

the higher its frequency, the slower its group velocity 

4.3. Viscoelastic orthotropic carbon-epoxy plate  

A viscoelastic orthotropic unidirectional lamina of 

1mm of thickness is analyzed in this section. This example 

was fully studied in references [12-13]. The elastic and 

viscoelastic material properties are given in Table 3. The 

material was characterized at 2.242 MHz by the use of 

ultrasonic waves transmitted through a plate-shaped 

sample immersed in water.  

Table 3. Material properties of unidirectional carbon-epoxy 1 mm 

thick plate (units in GPa) [12] 

C11  C12  C13  C22  C23  C33  C44  C55  C66  

132 6.9 12.3 5.9 5.5 12.1 3.32 6.21 6.15 

η11  η12  η13  η22  η23  η33  η44  η55  η66  

0.4 0.001 0.016 0.037 0.021 0.043 0.009 0.015 0.02 

 

 

Fig. 5 presents the Lamb wave results obtained for 

both the hysteretic and the Kelvin-Voigt viscoelastic 

models. It can be clearly seen from Fig. 5a and b that both 

models do not affect the phase velocity results in a 

substantial manner. The results obtained with the proposed 

method are in good agreement with those obtained in 

references [12-13] for the A0 and SH0 fundamental modes 

of propagation. Although not depicted here (see [13]), the 

approximate solutions of S0 mode have a good agreement 

with exact solutions at the lower frequency range, but a big 

divergence of the S0 mode occurs at the zone of high 

dispersion around 1.5 MHz. For the higher order modes, 

solutions can be tracked very well at the beginning of 

zones of high dispersion; however, after these zones, 

results are not longer accurate and the higher order plate 

theory fails in providing good estimates for the velocities. 

Fig. 5a and b show that the effect in the prediction of 

attenuation for both models is appreciable when the 

working frequency is different from the characterization 

frequency. 
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Fig. 5. Comparison between the Hysteretic and Kevin-Voigt models: a - and b - phase velocity dispersion curves, c, d - attenuation polar plots at 

500 MHz. 

 

4.4. Viscoelastic unidirectional carbon-epoxy plate 

A viscoelastic unidirectional carbon-epoxy panel of 

3.6 mm thickness is analyzed here. This example was 

chosen since it was fully studied by Neau in [14] by using 

a method based on the exact elasticity theory. The elastic 

and viscoelastic material properties are given in Table 4. 

The material was characterized at 2 MHz using 

conventional interferometry methods 

Table 4. Material properties of unidirectional carbon-epoxy 3.6 mm 

thick plate (units in GPa) [14]. 

C11  C12  C13  C22  C23  C33  C44  C55  C66  

86.6 9 6.4 13.5 6.8 14 2.72 4.06 4.7 

η11  η12  η13  η22  η23  η33  η44  η55  η66  

7.5 0.3 0.6 0.6 0.25 0.28 0.1 0.12 0.28 

 

Fig. 6 depicts the attenuation of Lamb modes in polar 

coordinates for the 3.6 mm thick carbon-epoxy plate. The 

hysteretic model was used for this numerical example. 

Although not depicted here, the results obtained with the 

proposed method (Fig. 6a and b) are coincident with those 

obtained by Neau in [14] for the fundamental modes of 

propagation at 100 kHz. However, as one moves along the 

frequency axis to higher frequencies, i.e. 500 kHz , the 

predictions for the symmetric modes of propagation start to 

highly deviate from the exact solutions (Fig. 6c and Ref. 

[14]). Nevertheless, the good accuracy for the 

antisymmetric modes of propagation still holds for this 

frequency (Fig. 6d). This can be explained by the fact that 

the displacement field for the flexural motion is one order 

higher than that of the extensional motion, what assures a 

better approximation of the flexural modes. It can also be 

seen that the mode attenuation is strongly related to the 

frequency and orientation of propagation. This is a 

common characteristic of anisotropic materials where the 

velocity, attenuation and energy of propagation of the 

multiple modes are both frequency and angle dependent. 

5. Discussion and conclusions 

A coupling between viscoelasticity theory and a 

laminated plate theory has been suggested which is 

applicable to viscoelastic fibre reinforced composite 

materials for the calculation of wave velocities and 

attenuation for the different modes of propagation. The 

proposed theory poses a compromise between low 

computational cost and accuracy in the results. It has been 

shown that the method has provided good estimates of 

velocity and attenuation in anisotropic laminates in the 

frequency range of Lamb wave applications. Comparisons 

to experimental data and results from literature have been 

presented in order to validate the model. New shear 

correction coefficients have been introduced which provide 

a better matching of the frequencies from the approximate 

theory to frequencies obtained from the exact theory. 

However, it was also depicted that the model suffers from 

some limitations that prevent it from being used to solve 

the whole spectrum of composite laminate problems, i.e. 
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high frequency range. It is also well known from literature 

that higher order theories accuracy deteriorates as           

the laminate  becomes thicker.  Nevertheless,  dispersion  
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Fig. 6. Attenuation of Lamb waves: a, b - attenuation polar plot at 100 kHz; c, d - attenuation polar plot at 500 kHz. 
 

knowledge gained with this fast modelling approach is of 

great importance for NDT and SHM applications since it 

plays a critical role in the selection of the optimal 

inspection frequencies for the improvement of the 

sensitivity and for optimization of sensor networks in 

terms of sensor placement and number of sensors.  
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Appendix 

For the case of symmetric laminates the equations of 

motion can be decoupled into two independent matrices. In 

order to obtain solutions for the symmetric and 

antisymmetric modes of propagation, combinations of 

frequency and wavenumber where the matrices 

determinants go to zero must be found. The symmetric 

modes are governed by 
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The antisymmetric modes are governed by 
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where xA = {W0 Ѱx Ѱy Φz Λx Λy} and the terms of LA are 

given by 
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  (A.4) 

where kx= k cos(θ), ky= k sin(θ) and k is the wavenumber. 

Additionally, 
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where i, j= 1,...,6, ρ is the density of the material and h is 

the thickness of the plate. The shear correction coefficients 

κ1 to κ5 where taken according to [9]. The remaining 

correction factors were calculated by matching specific 

frequencies from the approximate theory to frequencies 

obtained from the exact elasticity theory as follows:          

κ6 = π/ 15  and κ7 = κ8 = π/ 17 . The resulting complex 

wave number k = kRe + ikIm is used to describe the phase 

velocity of waves travelling through their real part, kRe, and 

the amplitude decay through their imaginary part, kIm. 
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M.- A. Torres-Arredondo, C.-P. Fritzen 

Klampaus stangrumo plokštelių teorija Lembo bangų sprendimams 

greitai modeliuoti taikant neardomuosius bandymus ir struktūrinės 

būsenos stebėseną 

Reziumė 
Nukreiptosios ultragarso bangos turi daug naudingų savybių, kurios 

gali būti pritaikytos neardomiesiems bandymams ir struktūrinės būsenos 
stebėsenai. Tačiau, norint panaudoti šias bangas defektų stebėsenai, kartu 
naudoti automatinį duomenų apdorojimą ir analizę, reikia turėti daug 
informacijos apie šių bangų generavimą ir sklidimą. Todėl išmanyti 
dispersines charakteristikas labai svarbu, kai nustatomas reikiamas 
jutiklių skaičius ir padėtis. Šiame darbe pateikiama aukštesniosios eilės 
plokštelių teorija, leidžianti gauti dispersines charakteristikas pluoštais 
sutvirtintuose kompozituose. Šis metodas leidžia gauti didesnį 
skaičiavimo efektyvumą ir yra paprastesnis už tradicinius metodus, ypač 
žemesniųjų dažnių diapazone, kuriame dažniausiai naudojamos Lembo 
bangos. Straipsnyje pateikiamas palyginimas su eksperimentiniais 
duomenimis, be to, aptariami metodo apribojimai. 
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