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Introduction 

Ultrasound imaging is an affordable 
and effective diagnostic tool in a 
clinical work. However, the  diagnostic 
value of ultrasound medical imaging is 
reduced by its fairly low spatial 
resolution produced by the convolution 
of the imaging pulse and the signal of 
the interrogated tissue. Even the best 
state of the art scanners do not allow 
imaging of tissue elements less than 
0.5 mm. This resolution is necessary to 
see many of the commonly occurring 
pathological tissue changes.  The image 
resolution or pulse duration is 
determined by the width of the 
ultrasound beam and the ultrasound 
signal bandwidth. Another limiting 
factor is the maximum pulse frequency 
that is possible to use for imaging the 
various parts of the human body. For 
adults, the upper frequency for 
external ultrasound examination of the 
heart and the abdominal content is 5.0-
7.5 MHz. The image resolution can be 
increased by deconvolution of the 
observed data with an estimate of the 
pulse derived from the same data.  

Several investigations have studied 
the problem of ultrasound image 
deconvolution. Analog-to-digital 
conversion of recorded ultrasound radio 
frequency (RF) signals permits the use 
of discrete versions of the various 
deconvolution methods known from the 
image restoration field. The non-linear 
transform that is used to compute the 
envelope signal makes it invalid to use 
the envelope signal as the starting 
point for the deconvolution. Two 
essential criteria of any good 
deconvolution method are  reasonable 
computational demands and noise 
robustness. Locally, the interaction 
between the pulse and the tissue is 
assumed spatially invariant. With this 
assumption the observed RF signal, 
p(t), can be modeled in terms of the 
continuous convolution equation, 

p(t)=

−∞

∞

∫ g(τ)h(t-τ)dτ+ν(t) (1) 

Here, g(t) is the true tissue 
signal, h(t) is the ultrasound pulse 

and n(t) is the additive stochastic 
noise that invariably degrades all real 
data. The image blurring is explained 
by the convolution of the pulse, h(t), 
with the true tissue signal, g(t). As 
in optics h(t) is often called the 
point spread function. 

The difficult part of the 
deconvolution task defined by equation 
(1) is to obtain a reliable estimate of 
the acoustic pulse, h(t). Several 
methods have been proposed. 
Measurements in a water bath of the 
emitted pulse can not be used. This is 
because wave front  distortions and 
ultrasound energy absorption cause 
large changes of the pulse when it 
propagates through the tissue. Blind 
parametric and non-parametric methods 
can be applied to estimate the pulse 
from the observed ultrasound RF data. 
Good estimates have been obtained using 
short  segments of RF data and the 
assumption about spatial invariance of 
the pulse within the segment. Non-
parametric pulse estimation based on 
homomorphic filtering is proposed in 
[1,2]. This approach has the potential 
for a real time implementation since it 
is a non-iterative method based on the 
fast Fourier transform. The performance 
of several homomorphic transforms in 
ultrasound pulse estimation is studied 
in [3]. The central difficulty using 
any of these homomorphic transforms is 
their sensitivity to the stochastic 
noise that degrades the RF data. In 
this paper we present a noise 
robustness procedure for a homomorphic 
pulse estimation using phase 
unwrapping. The performance of this new 
method is compared to the established 
homomorphic based pulse estimation 
methods [4]. 

Homomorphic Deconvolution 

An RF data set for a single 
ultrasound image consists of M 
reflected ultrasound beams. Each beam 
is recorded with a sampling frequency 
higher than the Nyquist sampling 
frequency in a fixed time interval 
(0,t0), corresponding to a specific 
tissue depth segment. The continuous 
signal of the beam is converted into N 
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discrete samples, p[n], n=1,...N. A 
discrete version of (1) is given by 

p[n]=h[n]∗g[n]+ν[n],     n=1,...N (2) 
where ∗ denotes the discrete 1D 
convolution operator. A homomorphic 
filtering is based on a non-linear 
mapping of the convolution h[n]∗g[n] in 
Eq.(2) [5]. The homomorphic filtering 
using the complex cepstrum,  

p n P z P z p nZ Z[ ] ( ) $( ) $[ ]log⎯ →⎯ ⎯ →⎯⎯ ⎯ →⎯⎯
−1

, (3) 
transforms the convolution  
p[n]=g[n]h[n] into the sum 
$ ( ) $ ( ) $( )p n g n h n= + . Prior to the homomorphic 
transform an exponential weighting of 
the RF data along each beam is 
necessary for the established 
homomorphic transforms.  The 
exponential weighting moves the complex 
zeroes of the sequence $ [ ]p n  away from 
the complex unit circle and makes the 
sequence stable. For the new 
homomorphic transform in this paper the 
sequence $ [ ]p n  is made stable by the 
noise robust phase unwrapping 
procedure. To separate the pulse from 
the transformed signal of the tissue an 
ideal linear filtering with   nc  cutoff 
value can be used in cepstrum domain: 

$[ ] [ ] $[ ]h n l n p n= ,   n N= 1,... ; (4) 

l =
⎧
⎨
⎩

0
1
,
,
    

n n n

n n n n
c c

c c

+ −

+ −

< <

≤ ≥,
 

The estimate of the pulse in the 
ordinary frequency domain is obtained 
by the inverse transforms 

$[ ] $ ( ) $ ( )exph n H z H zZ⎯ →⎯ ⎯ →⎯⎯ . (5) 
To reduce the effects of a noise on 

the pulse estimate, the mean value of 
the pulse estimates  of all beams is 
calculated in the complex cepstrum 
domain. After estimating the pulse with 
homomorphic filtering, we use the 
ordinary Wiener filter to perform the 
actual deconvolution in the frequency 
domain: 

G z P z H z

H z q
( ) ( ) ( )

( )
.=

+

∗

2
 (6) 

The final transformation to get the 
deconvolved RF image in the time domain 

is G z g nZ( ) [ ]
−

⎯ →⎯⎯
1

. 

Noise Robust Phase Unwrapping 

The computation of the complex 
cepstrum signal assumes that the 
frequency signal [ ]$( ) log ( ) arg ( )P z P z j P z= + , 

where z=ejω, is analytic and 
consequently continuous. When 
processing the observed RF data, the 
continuity assumption is fulfilled for 
the amplitude, but not for the phase. 
Only the discontinuous, principal phase 
values are available for -π≤ω≤π. These 

principal values, -π≤ARG[P(z)]≤π, and 
the continuous phase, arg[P(z)], are 
related through the expression 
arg[P(z)]=ARG[P(z)]+2πr(ω); r(ω) takes 
on the appropriate integer values for 
the corresponding frequency ω to unwrap 
the principal value of the phase to 
retrieve the continuous phase function. 
After phase unwrapping, arg[P(z)] will 
in general still be discontinuous at 
ω=±π due to the presence of a linear 
phase component. This linear component 
must also be removed to make arg[P(z)] 
continuous in the interval -π≤ω≤π. 

Simple algorithms for phase 
unwrapping with phase tracking and 
correction of phase discontinuities 
give unreliable results. This is due to 
that adjacent phase wraps in the RF 
data may be greater than π radians in 
magnitude because of noise and 
aliasing. 

The problem of recovering a 
reliable, unwrapped phase can be solved 
by minimizing the difference between 
the wrapped phase values and the 
unwrapped phase values in a least-
squares-error sense [6]. Denoting the 
continuous unwrapped phaseϕ(ω), its 
principal value ψ(ω) and the stochastic 
noise contribution to the measured 
phase valueν(ω), these phases are 
related by 

ψ(ω)=ϕ(ω)+ν(ω)+2πr(ω),  (7) 
where r(ω) is an unknown integer value 
such that -π≤ψ(ω)≤π. Eq.(7) can be 
written as ψ=W[ϕ+ν], using the wrapping 
operator W. With no noise the least 
squared unwrapped phase solution is 
given by the differential equation 

∂ φ
∂ω

ρ ω
2

2 = ( )   (8) 

with appropriate boundary conditions. 
In Eq(8) ρ(ω)=∆(ω+1)-∆(ω), where 
∆(ω)=W(ψ(ω+1)-ψ(ω)) is the observed, 
wrapped first order phase difference. 
This equation models in general the 
minimization of a nonquadratic cost 
functional which excludes the use of 
fast minimization procedures. Using 
special boundary conditions, Ghiglia at 
al. [6] have published a fast phase 
unwrapping algorithm  based on Eq.(8) 
and a specific form of a the discrete 
cosine  transform. It assumes noise 
free observations or observations  with 
a high signal-to-noise ratio, which can 
not be guaranteed in practice. 

To increase the robustness of the 
least square error approach to phase 
unwrapping Marroquin at al. [7] have 
proposed a regularization technique.The 
main idea of regularization is that, if 
an object of interest x is related to 
the observed data y corrupted with 
additive noise ν by the observation 
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model y=Ax+ν, one can obtain an exact 
solution x(λ,y) from the imperfect data 
y by defining a class of admissible 
solutions {x:║y-Ax║≤║ν║}.  Within this 
class an acceptable solution is 
selected ,which is consistent with the 
prior information [8].  The term λ is 
the regularization coefficient and 
controls the tradeoff between the data 
source and the prior source of 
information. The solution, x(λ,y), can 
be found as a minimizer of the 

criterion Ix=G(y-Ax)+λF(x), 0<λ<∞. In 
the standard regularization approach  F 

and G are both quadratic: G(y-Ax)=║y-
Ax║2, F(x)=║ Dk x║2., which lead to a 
second order cost functional. Here Dk is 
the regularization operator and is 
formed by a linear combination of 
derivatives. 

As it is shown in [7], the 
regularized solution x(λ,y) can be 
interpreted as the maximum posterior 
estimator of the true phase ϕ. In the 
Markov random field context, for 1D 
case ϕ and ψ are both random fields on 
an N×1 lattice and the noise ν is a 
spatially independent Gaussian random 
variable with common varianceσ 2 . The 
prior information about the true phase 
ϕ is expressed in the form of the prior 
probability distribution Pϕ(ϕ) Bayes' 
rule allows the combination of this 
prior distribution and the distribution 
of the observed data Pψ(ϕ), to obtain 
the posterior probability distribution 
Pϕ⎪ψ(ϕ). This latter distribution is 
related to the standard regularization 
cost functional through a discrete 
approximation to a regularization 
operator Dk and through the 
regularization term λ, which is equal 

to twice the common noise variance σ 2 . 
This interpretation gives insight into 
the meaning of the term λ in the 
representation of the second order cost 
functional for least squared phase 
unwrapping: 

U(ϕ)=║L(ϕ)-h║2+λ║D2ϕ║
2  (9) 

Here L is a noninjective linear 
operator and in this case the first 
order difference, h is the observation 
model and is represented with the 
observed wrapped phase difference ∆(ω), 
D2 is the second order regularizer, 
which is a combination of second order 
phase differences. 

Minimization of the cost functional 
is done by setting the gradient of U 
with respect to ϕ  equal to zero. The 
1D normal equation for phase unwrapping 
becomes 

( )∂ ϕ
∂ω

λ ∂ ϕ
∂ϕ

ρ ω
2

2

4

4+ = , 10) 

The solution of this fourth order 
differential equation with the discrete 
cosine transform to obtain an 
expression for non-iterative 
computation of the unwrapped phase is 
described in [4]. 

Experimental Results 

Two different homomorphic filtering 
methods were implemented to study the 
potential of Bayesian phase unwrapping 
in the homomorphic deconvolution of 
ultrasound images. The first was the 
ordinary complex cepstrum method using 
phase unwrapping and the second was the 
generalized cepstrum method using phase 
unwrapping [9]. These methods were 
compared to the corresponding methods 
with an ordinary phase unwrapping. 
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The RF data were recorded with 
annular mechanical probes of 3.5 or 5.0 
MHz using the Vingmed CFM sector 
scanner 750. The number of beams per 
segment was from 56 up to 128. The 

original data were obtained with an 8-
bit A/D converter at 16 MHz sampling 
frequency with 512 samples per a beam. 
To remove a low and high frequency 
noise the RF images were prefiltered 
both in the radial and the lateral 
direction. After deconvolution the data 
were demodulated and scanconverted into 
Cartesian coordinates to reproduce a 
correct tissue geometry for a visual 
inspection. 

In the methods with the ordinary 
phase unwrapping exponential weighting 
was done with α=0.975 for the radial 
deconvolution and α=0.96 for the 
lateral deconvolution. Deconvolution 
using the minimum phase or the mixed 
phase pulse assumption was 
investigated. The cutoff values of the 
radial ideal low-pass filter were nc

+=7 
for both minimum and mixed phase 
versions and nc

- =1 for the mixed phase 
version. The cutoff values of the 
lateral ideal low-pass filter were mc

+=5 
and mc

- =2 respectively. The Bayesian 
phase unwrapping gave the best results 
with the noise control parameter λ= 
3.0. 

Six short ultrasound RF image 
sequences were selected after 
preliminary adjustment of parameters to 
be processed by all four homomorphic 
filtering methods. To characterize 
results both visual and statistical 
evaluations were done. The single frame 
resolution, the single frame noise 
level and their variance through the 
frame sequence were taken into account 
in the visual evaluation. Reduced 

blurring and increased visibility of 
anatomical structures were the main 
criteria for the visual ranking. The 
statistical resolution gain was 
evaluated with the autocorrelation 

function using its mean value through 
the frame sequence. 

The evaluation showed that both 
methods using the Markov random field 
model gave considerably better 
deconvolution results than the methods 
with ordinary phase unwrapping. An 
exzample of the radial deconvolution 
results is represented in Fig.1. 
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Triukðmui atspari vienmatë dekonvoliucija 
ultragarsiniams medicininiams vaizdams filtruoti 

Reziumë 

Homomorfiniam filtravimui atlikti gali bûti 
panaudota signalø, esanèiø skirtingose kepstro 
srities zonose, tiesioginë konvoliucija. Taèiau 
ið literatûros þinoma, kad ðis metodas jautrus 
triukðmui. Ðis jautrumas kyla ið neteisingai 
suformuotos fazës iðskleidimo procedûros arba, 
kas ekvivalentu, netinkamo iðvestinës skaièiavimo 
daþniø srityje. Norëdami teisingai sudaryti fazës 
iðskleidimo procedûrà naudojome Markovo modeliu 
pagrástà, triukðmui nejautrø Bayesiano fazës 
iðskleidimo metodà. Atsitiktiniam triukðmui 
modeliuoti buvo panaudotas papildomas 
koreguojantis narys. Gautasis homomorfinis 
metodas buvo pritaikytas ultragarsiniams 
medicininiams vaizdams filtruoti. Vizualinis 
ultragarsiniø vaizdø ávertinimas parodë, kad 
Markovo modeliu pagrástas vienmatis Bayesiano 
fazës iðskleidimas daþniø srityje yra ðiuo metu 
geriausias homomorfinës dekonvoliucijos metodas. 
 

 
 

 
 


