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Introduction 

The purpose of the ultrasonic 
reflection tomography is to construct 
from the reflection data a quantitative 
cross-sectional image displaying a 
distribution of the specific ultrasonic 
parameter in the material under a test. 
A simple filtered backprojection method 
along circular arcs is usually used to 
obtain reconstructed images [1-3]. The 
reconstructed images are imperfect 
because of ultrasound wavefront 
curvature. In order to achieve better 
resolution of reconstructed images in 
the ultrasound reflection tomography , 
the curvature of the  wavefronts has to 
be known and taken into account 
performing backprojection. 

Reconstruction of wavefronts of 
pulsed ultrasound fields is very 
complicated, because amplitude and 
phase of a wave are not constant and 
varies in all directions. The pulsed 
wave fields were extensively 
theoretically and experimentally 
studied by J.P.Weight and et al. [4-6]. 
These studies showed, that assuming 
idealized piston source, experimental 
results are in good agreement with 
theoretical results. 

The goal of our work was to develop 
wavefront reconstruction algorithm of 
ultrasonic fields, radiated by sources 
of finite dimensions and for circular 
transducer to test usually in the 
ultrasonic reflection tomography used 
assumption, that wavefronts are 
spherical [1-3]. 

Theory of wave propagation 

The wave, propagating in three 
dimensions, can be written [7]: 

( ) ( ) ( )u x y z t A i A j A k k x k y k z tx y z x y z, , , cos= + + + + −
r r r

ω
  (1) 
where u is the disturbance in space at 
the position x, y, z and time t; Axi, 
Ayj, Azk are the amplitudes of the 
components of the disturbance in the x, 
y and z directions; kx, ky, kz are the 
components of the wave vector in three 
dimensions, ω  is the angular 
frequency. 

Usually it is assumed, that 
wavefront is location in space with 
equal phase, e.g. a particular pressure 

amplitude. So the equation of a wave 
can be written as a constant value of 
the phase: 

1.Equation of a plane wave can be 
expressed:  

k x k y k z tx y z+ + − =ω φ . (2) 
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2.Equation of spherical wave can be 

expressed: 
k r tr − =ω φ ,  (3) 

where r is the radial distance from the 
origin; kr is the wave vector in a 
radial direction. 

Ultrasonic beams, radiated by 
sources of finite dimensions, diverge 
and for this reason ideal plane waves 
can not be excited. An energy, radiated 
by a transducer, does not remain in the 
cylinder, the base of which is the 
piston, but after some distance, called 
near field zone, spreads into the cone. 

A near field zone can be expressed 
[7]: 

N s
=

πλ
,  (4) 

where s=πR2 is the area of the 
transducer, R is the transducer radius, 
λ=c/f is the wavelength, c is the 
ultrasound velocity, f is the frequency 
of the transducer. 

This spreading reduces the intensity 
of the wave. The approximate picture of 
the beam spreading is presented in 
Fig.1. An actual beam divergence 
process is much more complex. 

The pulsed field of the transducer 
can be calculated using the 
mathematical model based on the spatial 
impulse response approach [8]. The 
spatial impulse response of the disk 
with radius R is given by the following 
expressions: 
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t y c0 = / , 

( )t R x y c1
2 2= − + / ,   (7) 

( )t R x y c2
2 2= + + / . 

The structure of the pulsed field 
can be explained using concept of 

direct plane and edge waves. The whole 
surface of a piston generates a direct 
plane wave, which propagates in 
cylindrical region having the piston at 
its base. From edge of the transducer 
diffracted edge waves are radiated, 
which propagate in all directions from 
the edge of the piston. 

Algorithm for calculation of 
wavefronts coordinates 

The detailed explanation of the 
wavefront calculation algorithm is 
given in [9], and only brief 
description of it is included here. 

A transmitter radiates an impulse 
into space, and the time of flight tf of 
the impulse from transmitter to 
receiver is measured. Usually it is 
assumed, that  a wavefront is location 
of points with an equal phase. In the 
case of pulsed ultrasonic fields we can 
assume, that wavefront is location in 
space which is reached by the wave 
after the same time tc. 

So, when the time of flight from a 
transmitter to a receiver tf is 
measured, and the time of flight from 
the transmitter to the particular 
wavefront tc is known, we can calculate 
the distance from the receiver to the 
wavefront (Fig.2.): 

( )a t t ctf f c= − ,  (8) 

where tf is the measured time of flight; 
tc is the time of flight when receiver 
is in front of the transmitter, c is 
the velocity of ultrasound in the 
medium. 

The exact curvature of the wavefront 
is not known, so we don’t known how to 
backproject calculated distance from 
the receiver to the wavefront. This 
distance can be backprojected in all 
directions along the radius of the 
circle, the center coordinates of which 
are coordinates of the receiver, and 
radius is equal to the distance from 
the receiver to the wavefront atf 
calculated according (8). 

We had developed two methods for a 
calculation of ultrasonic wavefronts 
coordinates, using two different 

assumptions: 

2θ2R

N

 
Fig.1. Beam spreading diagram 
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1.Spherical wave approach method. We 
assume the transducer to be a point 
type transducer, which radiates 
spherical waves into space. The 
coordinates of the wavefront can be 
found backprojecting the distance from 
the receiver to the wavefront along the 
radius from the transmitter to the 
receiver (Fig.2): 

x x a

y y a
fs r tf

fs r tf

= −

= −

sin ,

cos .

α

α
  (9) 

2.Plane wave approach. We assume the 
transducer to be plane wave transducer, 
which radiates plane waves into space. 
Then the coordinates of the wavefront 
can be found backprojecting the 
distance from the receiver to the 
wavefront along lines from  the 
receivers, parallel to the axis of the 

transmitter (Fig.2): 
x x

y y a
fp r

fp r tf

=

= −

,

.
  (10) 

Computation results 

Field radiated by a circular 
transducer was calculated. Then, using 
previously described methods, 
wavefronts at various distances from 
the transducer were reconstructed. The 
calculations were performed for a 
wideband disk type transducer of the 
radius R=7mm and with the center 
frequency f=2.5MHz. It was assumed, 
that transducer radiates radiopulse 
with the Gaussian envelope, duration of 
which was two periods. 

The field of the transducer was 
calculated in the zone y=0÷20N, x=-
3R÷3R. In the Fig.3 whole computed 
field is presented, and in Fig.4 the 
field in the zone y=0÷3N, x=-2R÷2R is 
presented. 

The time of flight was evaluated 
using the signal zero-crossing 
technique (Fig.5.). It means, that the 
time of flight tf was measured, after 
signal reaches maximum and then changes 
a sign from positive to negative. B-
scan image of the field of the 
transducer, is presented in Fig.6. 

The reconstructed wavefronts were 
compared with two types of hypothetical 
wavefronts: 

• wavefront of a point transducer - 
spherical wavefront (SW) (Fig.7); 

• ideal wavefront of a circular 
transducer - combi-nation of plane and 
spherical wavefronts (CW) (Fig.8). 

The wavefronts were reconstructed at 
various distances from the transducer: 
y=0.5N (Fig.9); y=N (Fig.10); y=2N 
(Fig.11); y=3N (Fig.12); y=5N (Fig.13). 

Transmitter
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Fig.2. Reconstruction of ultrasonic wavefronts 
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Fig.5. Zero- crossing technique 
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Fig.6. B-scan image of the transducer field. 
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Fig.3. The field of the transducer in the zone 
y=0÷20N, x=-3R÷3R. 
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Reconstructed wavefronts in the 
figures are marked as RW. Uncertainty 
between the reconstructed wavefront and 
the spherical wavefront in the figures 
is marked as RS, and uncertainty 
between reconstructed wavefront and the 

ideal wavefront of a circular 
transducer is marked as RC. 

As can be seen from the results 
presented in Fig.9 and Fig.10., in the 
near field zone, that is, when y N≤ , 
the wavefront is the combination of 
plane and spherical wavefronts. Due to 
the edge waves the wavefronts are not 
ideally plane within the geometrical 
beam region in the near field zone (the 
uncertainty RC < 01. λ ). Outside 
geometrical beam region the wavefront 
corresponds to the spherical wave, 
radiated by the edges of the 
transducer. 

When N y N< ≤ 3  (Fig.11. and Fig.12.), 

we have an intermediate zone. In the 
geometrical beam region wavefronts can 
be assumed to be spherical with the 
uncertainty RS < 0 01. λ , but outside the 
geometrical beam region it is not 
possible to approximate them by simple 
curves with a small uncertainty. 

Transducer

Wavefront

yc

 
Fig.7. Schematic cross-section of the spherical 
wavefront of a point transducer. 
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Fig.8. Schematic cross-section of the wavefront 
of a circular  transducer 
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Fig.4. The field of the transducer in the zone 
y=0÷3N, x=-2R÷2R. 
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Fig.11. Wavefront, reconstructed at the distance 
y=2N from the transducer and corresponding 
uncertainities 
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Fig.9. Wavefront reconstructed at the distance 
y=0.5N from the transducer and corresponding 
uncertainities 
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Fig.13. Wavefront reconstructed at the distance 
y=5N from the transducer and corresponding 
uncertainities 
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Fig.10. Wavefront reconstructed at the distance 
y=N from the transducer and corresponding 
uncertainities 
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In the far field zone (Fig.13), that 
is, when y N> 3 , calculated wavefronts 
are in a good agreement with spherical 
wavefronts. So, with the uncertainty 
RS < 0 05. λ , we can assume, that 
transducer is a point type transducer 
and it is transmitting a spherical 
wave. On the sides of the zone errors 
are bigger, because the amplitude of 
the signal is small and errors can be 
due to the fact, that zeros of the 
pulsed signal are not correctly found. 

 

Conclusions 

New method for a reconstruction of 
wavefronts of ultrasonic waves from 
data collected at discrete points in a 
fixed plane, perpendicular to a 
propagation direction, has been 
proposed. The accuracy of the method 
was determined comparing the 
reconstructed wavefronts with those 
obtained theoretically from a model of 
the baffled piston type circular 
transducer. 

From the results presented it is 
seen, that shape of the wavefront 
depends on the distance between the 
wavefront and a transmitter. The 
computed wavefronts can be analyzed in 
terms of plane and edge waves radiated: 

1. In the near field zone, y N≤ , 

with uncertainty less than 0.1λ, 
wavefronts can be assumed to be the 
combination of the plane and spherical 
wavefronts. 

2. In the intermediate zone 
N y N< < 3 , in the geometrical beam 
region, wavefronts can be assumed to be 
spherical. Outside the geometrical beam 
region, due to edge waves, form of the 
wavefront becomes complex, and it can 
not be approximated to simple curves. 

3. In the far field zone, y N> 3 , 

with uncertainty less than 0.05λ, 
wavefronts can be assumed to be 
spherical wavefronts. 
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E.Jasiûnienë, L.Maþeika 

Ultragarsiniø bangø frontø atkûrimas ið 
apskritojo keitiklio lauko 

Reziumë 

Bangos frontams atkurti ið apskritojo 
ultragarsinio keitiklio lauko naudotasi nauju 
metodu. Nustatyta, kad artimojoje zonoje, kai 
y N≤ , su neapibrëþtimi 0.1λ gali bûti laikoma, 
kad bangos frontai yra plokðèiø ir sferiniø bangø 
kombinacija. Tolimojoje zonoje, kai y N> 3 , su 

neapibrëþtimi 0.05λ gali bûti laikoma, kad bangos 
frontai yra sferiniai. Tarpinëje zonoje, kai 
N y N< < 3 , geometrinio spindulio ribose bangos 
frontai yra sferiniai, o uþ geometrinio spindulio 
ribø jie negali bûti aproksimuoti paprastomis 
kreivëmis. 
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Fig.12. Wavefront reconstructed at the distance 
y=3N from the transducer and corresponding 
uncertainities 


