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We analyse a normal plane wave
travelling along the waveguide with a
rectangular cross-section. The pressure
in this wave we shall denote by p,, the
coordinate along the waveguide by x,
the time by t, the circular frequency
by ® and the wave number by k=w/c.
In this «case a plane normal wave
travelling along the rectilinear
section shall be written as:

pi = eIlefla)t ) (1)

This wave, upon reaching the
curvilinear section, shall form the
reflected field that may be written in

the form of the system of plane normal
waves
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A part of a wave energy penetrates
the curvilinear section of the
waveguide that we shall describe by
means of cylindrical coordinates, and
the wave field that passed the
curvilinear section we shall connote by
p.. It 1is possible to express the
pressure in the wave that passed
through the curvilinear into the
rectilinear part of the semi-waveguide

by means of the decomposition into
normal waves in the form of
2
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Here the coordinate x, is directed

along this rectilinear section as 1is
shown in Fig.1l, y, is the transversal
coordinate, a is the width.

As it seen, the coefficients ¢, and
p, are the coefficients of reflection
and transmission of plane wave through

the curvilinear section and the
solution of the diffraction problem
leads to their determination (with

3, kz—(ﬂjz).
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Fig.l.Waveguide with a rectangular cross-section
in the curved section

However, for solving of the problem
it is more convenient instead of the

system of the coefficients ¢, and S to
examine the distribution of pressure
p,(y) and velocity v,(y) in the plane
at the joint of the first semi-
waveguide and curvilinear section, as
well as pressure p,(y) and velocity
v, (y) at the joint between the
curvilinear section and the second
semiwaveguide.

The normal velocity of particles in

the first cross-section may be
expressed by a pressure. Since
0 2 Py
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and, on the other side,
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then, with the help of Fourier’s
theorem, we shall obtain
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Similarly, instead of the system of
transmission coefficients f, we shall
introduce the functions p,(y) and v, (y)
(pressure and velocity distribution) in
the second cross-section, i.e., at the

section and
From Euler’s

joint of the curvilinear
the second semi-wavequide.

equation
2
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we shall find all the coefficients
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The equations (7)-(10) make it
possible to decribe the boundary

conditions for the equation of the wave
field in the curvilinear section of the
waveguide. We search for the field in
this section as the solution of a wave
equation in the cylindrical coordinates

(r, O).
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at the following boundary conditions
p(r,0)=py(r-Ry)
17p 2 , 0=0
——=po°V(r-R
cop =P ulr-R)

p(":%) = pz(r - Rl)

Here ¢, is the sprading angle of the

curvilinear section, R, 1is the interval
radius of bend, R,+a 1s the external
radius. As it seen, the boundary

conditions for the field p(r,0) in the
essence are the condition for Jjoining
wave fields at the different sections
of the composite waveguide.

The solution of a wave equation for
the curvilinear section may be express
by means of the separation of the
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variables in the form of the following

series

i) 5 (70|
(13)

Here y, is the separation constant of
the variables which form the series of
eigenvalues [I]. From the wave equation
(12) we obtain the following equation

2
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The exact solution of this equation
may be given in terms of the Bessel’'s J,
(kr) and Neumann’s N, (kr) functions

p(ra.r)=J, (kr)N,, (kR)=N, (kr)J,, (KR,
(15)
where y is the solution of the

frequency equation

J, (KRy)N,. (kKR)=N, (kRy)J, (kR )=0 (16)

which also comprises complex numbers
Yn=17n
These forms possess the properties

of orthogonality

R, R,
[ p(70:7)P(7mer)rtdr =0, [ p?(7.r)rtdr =N,

Rl Rl
where N, is the essence of the norms of
eigenforms.

The selected form of solution (13)
fully corresponds to the physics of the
phenomenon, i.e., permits the
transition to the travelling and
reflected waves of the type
a,e'’’ +b,e”?

Now we shall start fulfilling the

boundary conditions at the boundaries
of the division between the rectilinear

sections and the curved part of the
waveguide. From the boundary conditions
(12) with the help of solution (13) we

shall get four equations
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7 Sin(}/n¢0) }p(]/n,r) = pZ(r - Rl)

At first it 1s more convenient to
analyse the two last equations. By
means of the integral transformat with
the account of the orthogonality of

forms p(y, ,r) we shall obtain
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first pair of equations from formulas
(13) we shall get
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We had obtained the integral
equations that describe the plane wave
diffraction.
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Plokdéiosios bangos difrakcija idlenktojoje
staéiakampio skerspjlivio bangolaidpio dalyje

Reziumé
Darbo tikslas - gauti integralinieg 1lygéie
sistema plokdéiosios bangos difrakcijai

apibréptomis salygomis apskaiéiuoti.

Naudotasi BDturmo-Liuvilio metodu. Sprendimo
iedkota tiriant normalia plokd&éiaja banga,
sklindanéia staéiakampio formos bangolaidpiu.

Banginés energijos sklidimas bangolaidpio
idlenktaja dalmi, tirtas cilindrinése
koordinatése, kai kradtinés salygos formuotos
tarp tiesiosios ir idlenktosios bangolaidpio
dalies.

Sprendpiant bangine 1lygtad sudaryta lygéis
sistema. Ja i1dsprendus gauta plokdéiosios bangos
difrakcija alk(néje.
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