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Introduction 
The motivation for this work was the need to know 

exact form of ultrasonic wavefronts in order to use this 
information in the ultrasound reflection tomography 
performing backprojection [1]. The purpose of the 
ultrasonic reflection tomography is to reconstruct from the 
data collected a quantitative cross-sectional image, which 
displays a distribution of the specific ultrasonic parameter 
in the material under a test. Usually the filtered 
backprojection method along circular arcs is used to obtain 
reconstructed images [1-3]. In order to achieve a better 
resolution of the images reconstructed in the ultrasound 
reflection tomography, the curvature of the wavefronts has 
to be known and taken into account performing 
backprojection. 

Reconstruction of wavefronts of pulsed ultrasound 
fields is very complicated, because amplitude and phase of 
a wave are not constant and varies in all directions. 
J.P.Weight and et al. [4-6] extensively theoretically and 
experimentally studied the pulsed wave fields in fluids. 
These studies showed, that assuming idealized piston 
source, experimental results are in good agreement with 
theoretical results. 

The propagation of ultrasonic beams in solids is even 
more complicated, because in solids exist several types of 
waves. Calculations of the field were made assuming solid 
to be isotropic and the experimental measurements of the 
field on the surface of the solid were carried out [7,8]. 

All mentioned works were devoted to calculation and 
experimental studies of the ultrasonic pressure amplitude 
beam profiles. To our knowledge, there are no works 
proposing methods for reconstruction of ultrasonic 
wavefronts. In fluids it’s not so difficult to measure 
wavefronts at various points. But it not the case in the solid 
media - we can not directly measure wavefronts in solids, 
so the only possibility is to calculate them from the 
measured parameters of the wave. 

The goal of this work was to reconstruct wavefronts in 
solids, after wavefront transformation on the liquid/solid 
boundary. The dimensions of the transducer are taken into 
account during simulation. Calculations of the fields were 
performed in media consisting of two different materials, 
for example, water - steel. Ultrasonic wavefronts were 
calculated from measured parameters of the wave using 
the method, proposed by the authors [9,10]. Proposed 
method reconstructs coordinates of ultrasonic wavefronts 
from the measured time of flight. Measurements were 
performed using immersion technique. The side drilled 

hole was used as a reflector in the test block, and the time 
of flight was measured. From this data the shape of the 
wavefront is reconstructed. Therefore, using this method, it 
is possible to calculate wavefronts not only in fluids, but in 
solids also. 

Impingement of an ultrasonic wave on a boundary 
between two media 

When an ultrasonic wave encounters an interface 
between two media, the energy of the wave is partitioned 
in a manner that depends upon the type of the incident 
wave, upon how the wave approaches the interface, and 
upon the acoustic properties of the two media. In the 
simplest formulation of the problem, a plane ultrasonic 
wave propagating in a homogeneous media of uniform 
density ρ1 and of constant sound speed c1 is normally 
incident on a plane boundary separating the first media 
from a second homogeneous media of different acoustical 
properties represented by ρ2 and c2. A simple relationship, 
known as Snell’s law, describes the angle of refraction of 
transmitted wave. A common case, met in practice, which 
we also use in our modeling and experiments, is the 
water/steel interface [11]. 

According to [12] no phase shift occurs between the 
incident and the transmitted wave, regardless of which 
media has the higher acoustic impedance. In practice, the 
actual situations are often considerably more complicated 
than the ideal conditions described in theory.  

The ultrasonic field simulation 
According to various methods it can be shown that 

acoustic field of plane disk transducers consist of plane 
and edge waves. Such a presentation has been proved to be 
valid by many theoretical simulations and practical 
experiments [13-19]. It was shown that edge waves are 
concentrated on a geometrical axis of the transducer, 
which in the case of a circular transducer corresponds to 
equal distances from transducer edges. This line can be 
called an acoustical axis of the transducer. On the 
acoustical axis the signal in a far field corresponds to a 
maximum value in perpendicular to axes plane. In the case 
of two materials acoustical axis may not coincide with 
geometrical axis [20]. The geometrical axis in second 
media we shall determine like extension of geometrical 
axes only with the angle corresponding to the Snell's law. 
The acoustical axis we determine as positions with a 
maximal amplitude. 
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Usually the Snell's law is determined for plane waves, 
but under some approach it is valid for other shapes of 
waves too and is used in similar approaches [21]. Here we 
made an assumption that the Snell's law is valid for each 
ray emitted by any point of transducer. In this case, if we 
want to calculate the path of the waves for two selected 
points, one on the transducer surface and other in the 
second material, it is necessary to find the point satisfying 
the Snell's law at the refraction plane between two 
materials. Of course, such an approach does not take into 
account a transmission coefficient for a signal amplitude. 

The described model can be extended for calculation 
of acoustical fields in the case of two, three and more 
materials. Of course such an approach, based on a scalar 
model, does not take into account all complexity of waves 
in solids, but it can be fast enough and show the structure 
of a transducer field. 

We can see that a big part of an energy is concentrated 
in three pulses. The first pulse corresponds to the arrival 
time of a plane wave from the surface of a transducer. The 
second and the third pulses correspond to the arrival times 
of edges waves from the nearest and farthest edges of disk 
shape transducer. Outside the direct beam region they 
corresponds to the first and second pulses, because in this 
case a plane wave is absent. 

Such a model usually can be used only for 
homogenous media. It is difficult to derive a similar 
analytical solution for the case of two or more materials, 
especially if a transducer is not parallel to the surface, 
because the model becomes not axisymmetrical. 

For a solution of this problem we have made 
assumption that there must be no significant difference in 
the form of the pulse response and the main difference is 
only in the plane and edge waves arrival moments t0, t1, t2. 
In this case for a calculation of the pulse response at the 
point P(x,z) (Fig. 1) it is necessary: 

1. To determine the times t0, t1, t2; 
2. To find the point P’(x’,z’) in a homogeneous media 

with specified ultrasound velocity, for which the pulse 
response has the same time difference t t t t1 0 1 0

' '− = − and 

t t t t2 1 2 1
' '− = − , where t t t0 1 2

' ' ', ,  are the arrival moments 
of the waves to the point P’(x’,z’); 

3. To calculate the pulse response of a transducer 
using the standard algorithm for a disk shape transducer. 
Of course, the absolute times must be corrected according 
real to the t0 for the point P(x,z). 

The time of flights t1 and t2 can be calculated from 
system of equations, according to which each of the rays, 
emitted by points 1 and 2 of transducer plane must satisfy 
the Snell's law at the boundary of the second medium:  

 
c r x x c r x x
c r x x c r x x
1 11 1 2 12 1 1

1 21 2 2 22 2 2

⋅ ⋅ − = ⋅ ⋅ −
⋅ ⋅ − = ⋅ ⋅ −

⎧
⎨
⎩

( ) ( ),
( ) ( ),

p p k

p p k
 (1) 

 t r
c

r
c1

11

1

12

2
= + ,  (2) 

 t r
c

r
c2

21

1

22

2
= + ,  (3) 

where c1 , c2 are the ultrasound velocities in both materials 
and r11, r12, r21, r22, xp1, xp2, xk1, xk2 are explained in Fig. 1. 

The time t0 for a plane wave can be calculated as 
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where zk0 =(zk1+zk2)/2, α1 - is the central beam angle in the 
first and the second media, and 

x x z za k k= + ⋅ + ⋅0 2 0 1tg( ) tg( ).α α  (5) 

The purpose of the second step is to find some point in 
a homogeneous media (for example, with the ultrasound 
velocity c1) with the same time difference t2- t1 like in the 
first step. The coordinates of this point can be found from 
the equations presented below: 

 ∆ = + + − − +( / ' ) ( ' ) ( / ' ) ( ' )d z x d z x2 22 2 2 2 , (6) 

where d is the transducer diameter; 
We can find that 
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where 

∆ = − = −l l t t c3 2 3 2 1( ) ,   

a d z a d z+ −= + = −/ ' , / ' ,2 2   

z x xa' ( )cos( ).= − α1    

In the third step, when coordinates of the equivalent 
point P’(x’,z’) are determined, it is possible to calculate the 
transducer pulse response using diffraction model for a 
circular shape transducer. However, this pulse does not 
take into account an absolute time and amplitude. In 
special cases both of them can be simply corrected. 
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Fig. 1 Field calculation for a circular shape transducer for the two 
material case 
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After these three steps an acoustical field pa (t,x,y,z) of 
the transducer with driving pulse u(t) can be obtained 
using 

p t x y z u t h t x y za t( , , , ) ( ) ( , , , ),= ⊗  (8) 

where ⊗ denotes convolution. Of course, in this approach 
the transmission coefficients for a signal amplitude were 
not taken into account. 

Algorithm for calculation of wavefronts 
coordinates 

The detailed explanation of the wavefront calculation 
algorithm is given in [9], and only brief description of it is 
included here. 

A transmitter radiates an impulse into space, and the 
time of flight tf of the impulse from transmitter to receiver 
is measured. Usually it is assumed that a wavefront is 
location of points with an equal phase. In the case of 
pulsed ultrasonic fields we can assume, that wavefront is 
location in space which is reached by the wave after the 
same time tc. So, when the time of flight from a transmitter 
to a receiver tf is measured, and the time of flight from the 
transmitter to the particular wavefront tc is known, we can 
calculate the distance from the receiver to the wavefront: 

( )a t t ctf f c= − ,  (9) 

where tf is the measured time of flight; tc is the time of 
flight when receiver is in front of the transmitter, c is the 
velocity of ultrasound in the medium. 

The exact curvature of the wavefront is not known, so 
we don’t known how to backproject calculated distance 
from the receiver to the wavefront. This distance can be 
backprojected in all directions along the radius of the 
circle, the center coordinates of which are coordinates of 
the receiver, and radius is equal to the distance from the 
receiver to the wavefront atf, calculated according to(9). 

Computation results 
The field radiated by a circular transducer was 

calculated. Then, using above described methods, 
wavefronts at various distances from the transducer were 

reconstructed. The calculations were performed for a 
wideband disk type transducer of the radius R=1mm and 
with the center frequency f=2.5MHz. It was assumed, that 
transducer radiates burst with the Gaussian envelope, 
duration of which was two periods. The velocity of 
ultrasound was c1=1.48 mm/µs in the first (fluid) media 
and c2=5.7 mm/µs in the second (solid) media. 

The transducer was scanned from xr1=-7 mm to xr2=7 
mm, distance between transmitter and solid surface varied 
from 10 to 60 mm, and the distance from the solid surface 
to the reflector was 40 mm. 

Ultrasonic beams, radiated by sources of finite 
dimensions, diverge and for this reason ideal plane waves 
can not be excited. This spreading reduces the intensity of 
the wave. Measurements, which we are performing, are 
carried out in a far field zone. According to our 
investigations [10], it means, that in a far field zone we can 
assume a transducer to be a point type, which transmits 
spherical waves.  

In the case when wave propagates through the 
boundary of the two media with different velocities, it 
becomes quite complicated, how to find the corresponding 
radius of spherical wavefront. We assumed, that the radius 
of the wavefront for this case can be calculated using 
formula: 

 R
c a

c
a= +2 2

1
1

*
 (10) 

where c1 is sound velocity in the first media, c2 is sound 
velocity in the second media, a1 is the distance, which the 
wave propagates in the first media, and a2 is the distance, 
which the wave propagates in the second media. 

The time of flight was evaluated using the signal zero-
crossing technique. It means, that the time of flight tf was 
measured, after signal reaches maximum and then changes 
a sign from positive to negative. 

Experimental results 
Experimental measurements were carried out in order 

to test validity of the proposed methods. The block 
diagram of experimental set-up is presented in Fig. 2. The 
transducer and solid object were located in the water tank. 
The same transducer was used as transmitter and as 
receiver. The frequency of the transducer was f=2.5 MHz, 
and the beam divergence angle 38°. The signals were 
measured in reflection mode. The transducer was scanned 
from xr1=0 mm to xr2=15mm, the distance between the 
transmitter and the solid surface varied from 10 to 60mm, 
and the distance from the solid surface to the reflector was 
40mm. 200 signals were acquisited, 105 sample in each. 
Data acquisition was done using the imaging system [22], 
which was developed at the ultrasound laboratory in 
Kaunas University of Technology. 

In Fig. 3. B-scan image of the reconstructed field is 
presented. In Fig. 4 - 6 the wavefronts reconstructed at 
various distances from the transducer are presented. 

The reconstructed wavefronts in the figures are 
marked as RW, the wavefronts, computed using the 
proposed formula, are denoted as CW, and the wavefronts, 
approximated as nearest circles, are marked as AW. The 

 
Fig. 3. B-scan image of the transducer field. 
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uncertainty between the reconstructed wavefront and the 
spherical wavefront in the figures is marked as RA, the 
uncertainty between the reconstructed wavefront and the 
calculated wavefront is marked as RC. 

As can be seen from the results presented, the 
calculated wavefronts are in a good agreement with 
spherical wavefronts. So, with the uncertainty RS < 01. λ , 
we can assume, that the transducer is a point type 
transducer and it is transmitting a spherical wave. Also 
from the results presented it follows, that the radius of the 
wavefront, after the wave propagates through the liquid/ 
solid boundary, we can calculate using proposed formula 
with small uncertainty. On the sides of the zone errors are 
bigger, because the amplitude of the signal is small and 
errors can be due to the fact, that zero crossings of the 
pulsed signal are not correctly found. 

Conclusions 
Using the proposed method wavefronts of ultrasonic 

waves in solid from the data collected at discrete points in 
a fixed plane, perpendicular to a propagation direction, has 
been reconstructed. The accuracy of the method was 
determined comparing the reconstructed wavefronts with 
those obtained theoretically. From the results presented it 
is seen that wavefronts, computed using the formula 
proposed are in a good agreement with the reconstructed 
wavefronts. The wavefronts remain spherical even after 
propagation through the liquid/ solid boundary, at least 
with perpendicular orientation of the transducer. The 
radius of this sphere can be found using proposed formula. 
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L.Maþeika, E.Jasiûnienë 

Ultragarso bangø frontø transformacija perëjus skysèio ir kieto kûno 
ribà 

Reziume 

Vienas ið ultragarsinës tomografijos kokybæ nusakanèiø veiksniø 
yra rekonstrukcijos kreiviø tikslumas. Kaip rekonstrukcijos kreivës 
ultragarsinëje atspindþio tomografijoje yra naudojami ultragarso bangø 
frontai tiriamojoje aplikoje. Ðiame straipsnyje analizuojamas ultragarso 
bangø frontø atkûrimas kietuose kûnuose. Kompiuterinis modeliavimas ir 
eksperimentiniai matavimai buvo atlikti imersiniu bûdu. Nagrinëjamuoju 
atveju keitiklio suformuoti bangø frontai transformuojasi, pereidami 
skysèio ir kieto kûno ribà. Naudojant plaèiakampá keitiklá, buvo tiriama 
transformuotos bangos fronto formos priklausomybë nuo atstumo tarp 
keitiklio ir kieto kûno pavirðiaus. Straipsnyje pateikti kompiuterinio 
modeliavimo ir eksperimentiniø matavimø metodikos ir rezultatai. 

 


