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Introduction

An issue of sound wave propagation
in curved ducts has attracted attention
of numerous researchers. The problem is

of serious interest since it 1is the
generalization of the theory of
waveguides, Solution of problems
related to wave propagation in curved
ducts is of special practical
importance, since almost any piping
system includes conjugations of
straight sections by means of curved
ones. Normal wave propagation in the

curved bend section of the waveguide
will be studied using methods analogous
to those as in our paper [1]. Plane
wave propagation in the elbow bend was
investigated in [1]. Plane wave sound
energy is directed towards longitudinal
axis along the front.

Therefore it is reasonable to
analyse 1issues concerning curved ducts
with regard to the application of

mathematical methods for normal waves.
It should be noted that there are
other methods for computation of sound

propagation in curvilinear waveguides.
For example, in [2,3] a general method
for studying of heterogeneous
waveguides - a method of transversal

cross section is applied. However, in
the general case it 1s a rather bulky

algorithm, requiring the solution of an
infinite system of differential
equations.

Theory of normal wave diffraction in
curved ducts

Further we shall study a normal wave
propagating along a waveguide with a
constant cross-section. Due to the
separability of variables in both
rectangular and cylindrical coordinates
it 1is possible to see the single wave
of m-th order as an initial exciting
field:
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Further the m index shall be
omitted, taking into account the
separability of the corresponding
coordinates and accepting the above-
introduced notations. Thus the
diffracted field 1in the semi-finite

rectilinear section p, shall be written
without the index m in the form of
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and the one passing through the rounded

section of the part in the form of p,
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Here the above-introduced notations
and the condition
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are used, which expresses the

possibility of realization of the m-th
form in the semi-infinite waveguide,
i.e., the non-zero condition of
excitation.

As in the previous paper instead of
the coefficients we shall search for
p, (¥) and v, (y). From the boundary
conditions at the joint of the
curvilinear and the first rectilinear
sections
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then with the help of Fourier’s theorem
we shall obtain
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In an analogous way, instead of the

system of transmission coefficients g
we shall introduce the functions p,(y)
and v, (), which stand for the
distribution of the pressure and the
velocity of particles 1in the second
cross-section, i.e., at the joint of
the curvilinear section and the second
semi-waveguide. From Euler’s equation

[1] we shall find coefficients g,
expressing them in terms of v,(y):
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The equations (7)-(9) enable the

boundary conditions for a problem on a
wave field in the curvilinear section
of a waveguide to be defined. The field

in that section must satisfy a wave
equation, given in the c¢ylindrical
coordinates
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Here ¢, 1is the angular width the

curvilinear section, R, is the inferior
of the rounding radii, R,=R+a 1is the
outer radius of the rounded part of the
waveguide.

As 1is seen, the boundary conditions
for the field p(r,H,z), in the essence,

are the conditions for the joining of
the wave fields on the boundaries of
the rectilinear and rounded sections of

the waveguide.
The solution of the wave equation
(10) for the curvilinear section may be
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described by means of the separation of
the wvariables in the form of the
following series
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The multiplier cos as it was

mentioned, shall be omitted everywhere.

Here y, are the constant separations of
the variables that are forming the
series of the eigenvalues [4]. From the
wave equation (10) we shall obtain by
Fourier’s method the following problem

for radial components p(y, r) , i.e.,
for eigenforms of the given Sturm-
Liouville problem
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The exact solution of this equation
shall be obtained in terms of Bessel’'s

functions ( )and Neumann’s
functions N ( i
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n the following form
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Here the values % shall be
considered as the functions of KR,
which, as we have denoted in the first
chapter, shall Dbe considered as the
solution of a dispersion equation. We
shall describe this equation taking
into consideration that similarly to
the ordinary waveguide dispersion ratio
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It has the complex roots at the
frequencies lower than the critical
ones. The transition of the constant of

propagation ), to the complex area takes
place through the zero as in the direct
waveguide, therefore, the critical
frequencies of dispersion are given by

Jo(K1Ro)Ng(K1Ry) = No(K1Ry)Jo(KyRy) =0,
the solution of which was undertaken

above and it 1is correct for the given
case of the superior normal wave.

If the wvalues p form the numerous

eigenvalues, the denoted system of
functions p(y,r) shall form the
complete orthogonal system, i.e.,
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where N, is the essence of the norm of
the eigenforms.

The selected form of the solution of
a problem allows the transition to the
traveling waves with the help of
Euler’s formulae. In this case the
angular distribution of pressure may be

described in the form of a,e”"’ +he ",

this presenting the wave in terms of
the incident and reflected waves.

Now let us start with the adjustment
of solutions, described differently in
the various sections of the waveguide

channel. By means of boundary
conditions (11), wusing the solution
(12), we shall obtain four equations
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At first it is convenient to
consider the 1last two equations. By
means of integral transformation with
an account of orthogonality of
eigenforms [ﬂymr) we shall obtain
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Solving this system of algebraic
equations we shall obtain a, and b_.

Inserting a, and b, in the first pair of

equations (12), we shall obtain
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The wvalues p,(r-R) and p,(r-R) are
self-expressed through v, (y) and v,(y)
exactly 1like in the plane wave case

[1]. The given system can be presented
in the following form
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This system of integral equations

can be solved by using the methods of
mathematical physics, elaborated for
one equation, for example, by means of
a resolving or reduction to the system

of algebraic equations. The latter
method, as it 1is known, has several
variants of realization. The method of
change of infinite series in
expressions for kernel of integral
transformations by finite series Dby

means of truncation is more convenient.
This method is known also as the change
of exact wvalue of a kernel by its
approximation, which 1leads the kernel
to the degenerated form.

Conclusions

When
propagation

normal wave

a convenient
system of integral equations for
computation of diffraction of these
waves. Analysis normal wave diffraction
allows the peculiarities of sound wave
propagation to be identified in the
curved duct section when solving issues
of acoustic noise reduction.

studying
we obtain
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D. Gupas, E. Jotautiené

Normaliosios bangos difrakcija idlenktoje
bangolaidpio posikio dalyje

Reziumé

Metodais, panadiais & tuos, kurie apradyti
straipsnyje [171, tiriama normalioji banga,
sklindanti idlenktoje pastovaus skerspjlvio
bangolaidpio positkio dalyje. Sprendpiant
updavinius staéiakampése arba cilindrinése
koordinatése, kintamuosius dydpius galima
idskirstyti, todél pradiniam laukui supadinti m-
taja banga galima tirti atskirai.

Kaip banginis laukas sklinda
postkio dalyje, sprendpiama
koordinatése, kai kradtinés salygos
tarp tiesiosios ir idlenktosios
dalies.

Banginés lygties updavinys sprendpiamas
kintamg atskyrimo metodu ir idreidkiami eilute.

Pagal Eilerio formules parinkta sprendimo
forma, 1leidpia @pereiti prie Dbéganéis bangse.
Laukas vaizduojamas krintanéia ir atspindpio
bangomis. Pasinaudojant kradtinémis salygomis
sprendpiamos Dbanginés 1lygtys Jjas integruojant.
Gaunama patogi integralinie lygéis sistema,
normalig bange difrakcijai skaiéiuoti.

Normaligje  bange difrakcijos skaiéiavimai
leidpia nustatyti garso bange sklidimo principus
idlenktoje vamzdpio dalyje sprendpiant triukdmo
mapinimo klausimus.

idlenktoje
cilindrinése
formuojamos
bangolaidpio
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