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Introduction 

An issue of sound wave propagation 
in curved ducts has attracted attention 
of numerous researchers. The problem is 
of serious interest since it is the 
generalization of the theory of 
waveguides, Solution of problems 
related to wave propagation in curved 
ducts is of special practical 
importance, since almost any piping 
system includes conjugations of 
straight sections by means of curved 
ones. Normal wave propagation in the 
curved bend section of the waveguide 
will be studied using methods analogous 
to those as in our paper [1]. Plane 
wave propagation in the elbow bend was 
investigated in [1]. Plane wave sound 
energy is directed towards longitudinal 
axis along the front. 

Therefore it is reasonable to 
analyse issues concerning curved ducts 
with regard to the application of 
mathematical methods for normal waves. 

It should be noted that there are 
other methods for computation of sound 
propagation in curvilinear waveguides. 
For example, in [2,3] a general method 
for studying of heterogeneous 
waveguides -- a method of transversal 
cross section -- is applied. However, in 
the general case it is a rather bulky 
algorithm, requiring the solution of an 
infinite system of differential 
equations. 

Theory of normal wave diffraction in 
curved ducts 

Further we shall study a normal wave 
propagating along a waveguide with a 
constant cross-section. Due to the 
separability of variables in both 
rectangular and cylindrical coordinates 
it is possible to see the single wave 
of m-th order as an initial exciting 
field: 
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Further the m index shall be 
omitted, taking into account the 
separability of the corresponding 
coordinates and accepting the above-
introduced notations. Thus the 
diffracted field in the semi-finite 
rectilinear section p2  shall be written 
without the index m in the form of 
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and the one passing through the rounded 
section of the part in the form of  pt 
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Here the above-introduced notations 
and the condition 
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are used, which expresses the 
possibility of realization of the m-th 
form in the semi-infinite waveguide, 
i.e., the non-zero condition of 
excitation. 

As in the previous paper instead of 
the coefficients we shall search for 
p1(y) and v1(y). From the boundary 
conditions at the joint of the 
curvilinear and the first rectilinear 
sections 
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) 
then with the help of Fourier’s theorem 
we shall obtain 
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In an analogous way, instead of the 
system of transmission coefficients βn 
we shall introduce the functions p2(y) 
and v2(y), which stand for the 
distribution of the pressure and the 
velocity of particles in the second 
cross-section, i.e., at the joint of 
the curvilinear section and the second 
semi-waveguide. From Euler’s equation 
[1] we shall find coefficients βn, 
expressing them in terms of v2(y): 
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The equations (7)-(9) enable the 
boundary conditions for a problem on a 
wave field in the curvilinear section 
of a waveguide to be defined. The field 
in that section must satisfy a wave 
equation, given in the cylindrical 
coordinates 
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at the following boundary conditions 
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Here ϕ0  is the angular width the 
curvilinear section, R1 is the inferior 
of the rounding radii, R2=R1+a is the 
outer radius of the rounded part of the 
waveguide. 

As is seen, the boundary conditions 
for the field p(r,θ,z), in the essence, 
are the conditions for the joining of 
the wave fields on the boundaries of 
the rectilinear and rounded sections of 
the waveguide. 

The solution of the wave equation 
(10) for the curvilinear section may be 

described by means of the separation of 
the variables in the form of the 
following series 
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The multiplier cos mz
b
π
as it was 

mentioned, shall be omitted everywhere. 
Here γn are the constant separations of 
the variables that are forming the 
series of the eigenvalues [4]. From the 
wave equation (10) we shall obtain by 
Fourier’s method the following problem 
for radial components p(γn, r) , i.e., 
for eigenforms of the given Sturm-
Liouville problem 

( ) ( )1 01
2

2

2r r
r

r
p r K

r
p rn

n
n

∂
∂

∂
∂

γ
γ

γ, , .+ −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =  (13) 

The exact solution of this equation 
shall be obtained in terms of Bessel’s 
functions ( )J K r

nγ 1 and Neumann’s 

functions ( )N K r
nγ 1 in the following form 
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Here the values γn shall be 

considered as the functions of K1R1, 

which, as we have denoted in the first 
chapter, shall be considered as the 
solution of a dispersion equation. We 
shall describe this equation taking 
into consideration that similarly to 
the ordinary waveguide dispersion ratio 
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It has the complex roots at the 
frequencies lower than the critical 
ones. The transition of the constant of 
propagation γn to the complex area takes 
place through the zero as in the direct 
waveguide, therefore, the critical 
frequencies of dispersion are given by 
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the solution of which was undertaken 
above and it is correct for the given 
case of the superior normal wave. 

If the values γn form the numerous 
eigenvalues, the denoted system of 
functions p(γn,r) shall form the 
complete orthogonal system, i.e., 
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where Nn is the essence of the norm of 
the eigenforms. 

The selected form of the solution of 
a problem allows the transition to the 
traveling waves with the help of 
Euler’s formulae. In this case the 
angular distribution of pressure may be 

described in the form of a e b en
i

n
in n' 'γ θ γ θ+ − , 

this presenting the wave in terms of 
the incident and reflected waves. 

Now let us start with the adjustment 
of solutions, described differently in 
the various sections of the waveguide 
channel. By means of boundary 
conditions (11), using the solution 
(12), we shall obtain four equations 
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At first it is convenient to 
consider the last two equations. By 
means of integral transformation with 
an account of orthogonality of 
eigenforms ( )p rnγ ,  we shall obtain 
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Solving this system of algebraic 
equations we shall obtain  an and bn. 
Inserting an and bn in the first pair of 
equations (12), we shall obtain 
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The values p1(r-R1) and p2(r-R1) are 
self-expressed through  v1(y) and v2(y) 
exactly like in the plane wave case 
[1]. The given system can be presented 
in the following form 
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where the following notations are 
introduced: 
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This system of integral equations 
can be solved by using the methods of 
mathematical physics, elaborated for 
one equation, for example, by means of 
a resolving or reduction to the system 
of algebraic equations. The latter 
method, as it is known, has several 
variants of realization. The method of 
change of infinite series in 
expressions for kernel of integral 
transformations by finite series by 
means of truncation is more convenient. 
This method is known also as the change 
of exact value of a kernel by its 
approximation, which leads the kernel 
to the degenerated form. 

Conclusions 

When studying normal wave 
propagation we obtain a convenient 
system of integral equations for 
computation of diffraction of these 
waves. Analysis normal wave diffraction 
allows the peculiarities of sound wave 
propagation to be identified in the 
curved duct section when solving issues 
of acoustic noise reduction. 
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D. Guþas, E. Jotautienë 

Normaliosios bangos difrakcija iðlenktoje 
bangolaidþio posûkio dalyje 

Reziumë 

Metodais, panaðiais  á tuos, kurie apraðyti 
straipsnyje [1], tiriama normalioji banga, 
sklindanti iðlenktoje pastovaus skerspjûvio 
bangolaidþio posûkio dalyje. Sprendþiant 
uþdavinius staèiakampëse arba cilindrinëse 
koordinatëse, kintamuosius dydþius galima 
iðskirstyti, todël pradiniam laukui suþadinti m-
tàjà bangà galima tirti atskirai. 

Kaip banginis laukas sklinda iðlenktoje 
posûkio dalyje, sprendþiama cilindrinëse 
koordinatëse, kai kraðtinës sàlygos formuojamos 
tarp tiesiosios ir iðlenktosios bangolaidþio 
dalies. 

Banginës lygties uþdavinys sprendþiamas 
kintamø atskyrimo metodu ir iðreiðkiami eilute. 

Pagal Eilerio formules parinkta sprendimo 
forma, leidþia pereiti prie bëganèiø bangø. 
Laukas vaizduojamas krintanèia ir atspindþio 
bangomis. Pasinaudojant kraðtinëmis sàlygomis 
sprendþiamos banginës lygtys jas integruojant. 
Gaunama patogi integraliniø lygèiø sistema, 
normaliø bangø difrakcijai skaièiuoti. 

Normaliøjø bangø difrakcijos skaièiavimai 
leidþia nustatyti garso bangø sklidimo principus 
iðlenktoje vamzdþio dalyje sprendþiant triukðmo 
maþinimo klausimus. 


