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Sound power and sound wave radiation by a piston in a curved duct 
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Introduction 
The solution of the problem consists of two parts. The 

first part defines the sound power radiated by a piston in 
an elastic duct, the second part identifies sound wave 
radiation by a piston in a curved duct.  

The problem concerning sound propagation in curved 
ducts has drawn special attention of numerous researchers. 
On the one hand, this may be due to the fact that this 
problem is in the focus since it is the generalisation of the 
theory of waveguides. On the other hand, solution of tasks 
related to the propagation of waves in curved ducts is of a 
practical importance, because almost any system of ducts 
includes conjugation of straight duct sections by means of 
curves. 

Main difficulties occurring when solving tasks may be 
traced on the example of the simplest task of sound wave 
propagation through a duct having a rectangular cross-
section with rigid walls in the case its longitudinal axis line 
curves in circumference. In this case a cylindrical system 
of coordinates may be used. 

Sound power radiated in an elastic duct by piston 
with arbitrary axial-symmetrical velocity 
distribution 

Let us consider a sound radiation in a duct when in a 
cross-section z=0 arbitrary distribution of axial velocity Vz( 
r) is set. We shall denote the sound velocity that is created 
in a duct, through p (r, z). A temporary multiplier exp(-iωt) 
shall be omitted for a purpose of simplicity. 

The radiated sound power is given by 
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Here the sign (∗) denotes a complex-conjugated 
quantity. 

Here we shall solve a task in the same approximation 
as in the work [1]: 

,rada ZZ >>  
where Za is the shell impedance, Zrad - is the radiation 
impedance. Then the zero root of equation will be just 
imaginary and small value, i.e., 10 <<µ a . The other roots 
will be real. 

The sound pressure in a duct is: 
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Here k=ω/c is the wave number; ρ  and c are the 
density and the velocity of a sound wave propagation in a 

duct; J0 is the Bessel function of zero order; Vn is the n-th 
wave amplitude in the velocity distribution Vz( r). 

Let us expand the axial component of the velocity 
Vz(r) in a series at z=0: 

( ) ( )∑ µ= rJVrV nnz 0 .  (3) 

The amplitudes of the velocity Vn will be defined by 
ratio: 
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Here F= -iρω/Za. 
Substituting expressions (3) and (2) into (1), we shall 

obtain:  
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As indicated in [2], the functions J0 (µn r), where µn 
is the root of the dispersion equation, form the orthogonal 
system. In the approximation rada ZZ >>  the functions 

( )rJ nµ0  and ( )rJ nµ
∗
0  are also orthogonal. As a result, the 

integral I in Eq. (5) is equal to 0 at n≠m, and at n=m  
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Substituting into Eq. (5) J from (6) and Vn from (4), 
we shall obtain: 
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Eq. (7) defines the sound power, which is radiated to 
the duct, if at the cross-section z=0 the distribution of axial 
velocities Vz( r ) is given. 

Let us consider as an example the case when        Vz( r 
)=V0J0(αr). Such a distribution in the first approximation 
will be observed at vibrating of the membrane, located in 
the plane z=0. 

Then an integral in the Eq. (7) 
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Substituting expression (8) into (9), we shall obtain: 
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In Eq. (9) the multiplier before the sign of the total is 
the sound power which is radiated into a duct by a rigid 
cylinder, vibrating with the amplitude V0. Under the sign 
of the total there is an expression of the n-th wave 
radiation coefficient. 

Sound wave radiation by piston in curved duct 
Many studies [3, 4] are devoted to the problem of a 

sound wave propagation in a system consisting of two 
straight ducts connected by a bent duct. The simplest 
solution is obtained when ducts have rectangular cross-
section and middle axis line of bent part is changing in 
circumference. Nevertheless, many difficulties must be 
overcome in this problem, as for example, solution of 
infinite system of linear equations what greatly 
complicates solution and hampers understanding of 
physical phenomena. 

The given study presents the analysis of simpler 
problem: on one end of bent part (knee) of rectangular 
cross-section there is a piston which vibrates with the 
velocity  v=v0 e-iωt, where ω=2πf is the angular frequency. 
The other end of the knee (ϕ=π/2) is connected with 
infinite straight duct (Fig. 1). Let us define the sound field 
p2, which is created by a piston in a straight duct. Such a 
problem may be observed in ventilation systems. 

Let us assume that in the pipe-line there is a medium 
characterised by the density ρc and the sound propagation 
velocity cc. Movement of the medium in the  bent part is 
going to be analysed in the cylindrical system of the 
coordinates (r,ϕ, z), where axis z is located perpendicularly 
to the plane of the drawing of Fig. 1. 

As the study [3] reveals, the sound pressure p1(r,ϕ,z) 
in a knee having rigid walls may be written as  
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Here Jvn and Nvn are Bessel and Neumann functions of 
the order vn, km=mπ /d,  where d is the knee width, Amn and 

Bn are some constant amplitudes, 22
mcrm kkk −=  is the 

radial wave number, kc =ω/cc  is the medium wave number. 
The point above Jvn and Nvn indicates an derivative. The 
term exp(-iωt) for the sake simplicity is omitted. 

The function Rn in (10) satisfies the boundary 
conditions of inner (r=R1) and outer (r=R2) walls of the 
knee. As the walls are considered to be rigid, so the radial 
oscillation velocity of medium particles at their surface 
equals to 0. It follows that 
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It is a dispersion equation of the problem under 
discussion. Here, in contrast to widely known expressions 
not an argument, but an unknown order of the Bessel 
function vn  is defined. 

A number of algorithms of definition vn in the Eq. (11) 
are described. One of them [5] uses the reciprocal 
procedure and is set by a semi-whole order vn. In this case 
functions Jvn and Nvn are expressed by elementary 
functions. By substituting vn to (11), frequencies (krmR1), 
which satisfy the equation are defined. Diagrams and 
tables which may be used for calculation are given in study 
[5] 

In accordance with the Euler equation the tangent 
oscillation velocity of medium particles equals 
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The sound pressure p2(x,r,z) in a straight duct with 
rigid walls may be written as 
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where kq=qπ/(R2–R1) and Dmq are the mode amplitudes 
(m,q). The oscillation velocity of medium particles along 
the x direction equals 
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Fig. 1. Schema of a curved duct. 
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The sound pressure and oscillation velocity must 
satisfy the boundary conditions from which unknown 
amplitudes Amn, Bn, and Dmq are defined: 
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By substituting vϕ from (12) as well as p1 and p2 from 
(10) and (13) and vx from (14) to (15) we get: 
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Before starting to solve the system (16) we must 
remind that functions Rn(krnr) are orthogonal, i.e., satisfy 
conditions 
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From the first equation (16) we may define Amn. For 
this we multiply both parts of the equation by Rjcoskzdrdz 
and integrate within the limits from R1 to R2 by r and from 
0 to d by z: 
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The last integral on the right in (18) changes to 0 at all 
q≠0. At q=0 it equals to d. Therefore, all Amn=0 if m≠0. 

On the basis of orthogonality Rn finally we get 
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As m=0, so the second equation in (18) may be written 
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Let us multiply both its parts by coskj(r-R1) and 
integrate by r from R1 to R2. Then, taking in account of 
orthogonality of the function coskq(r-R1), we get: 
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Full sound pressure in a straight duct equals  
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From (23) it follows that at low frequencies up to the 
frequency of the first resonance f1=cc/(2d) only a plane 
wave may propagate in a duct: 
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Amplitudes of other waves decay by the law 
xkk cqe

22−−
.  

As it is known, the piston vibrating with the amplitude 
v0, radiates a sound wave in a straight duct having a 
pressure 

p0(x)=ρcccv0.  (25) 
The difference of sound pressure levels equals: 
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and pc=2.10-5 Pa is the reference level of a sound pressure. 
Eq. (26) shows the difference of a plane wave radiation by 
a piston to a straight duct through the knee relatively to a 
sound radiation by a piston directly to a straight duct. 

Conclusions 

The result obtained shows how the sound wave is 
radiated by the piston in the elastic and curved duct. This 
analysis may be applied for reducing a noise radiation in a 
curved duct. 
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Garso galia ir garso bangø iðspinduliavimas stûmokliu á iðlenktà 
vamzdþio dalá (alkûnæ)  

Reziumë 

Darbe nustatyta garso galia, iðspinduliuojama stûmokliu á tamprø 
vamzdá. Antroje dalyje tiriamas garso bangø iðspinduliavimas stûmokliu 
á iðlenktà vamzdþio dalá. 

Pirmuoju atveju tiriama, kada garsas iðspinduliuojamas á vamzdá 
skerspjûvyje z=0, laisvai pasirenkant aðiná greitá Vz ( r). Uþdavinys 
sprendþiamas cilindrinëse koordinatëse ir gaunama garso galia, kurià á 
vamzdá iðspinduliuoja standus stûmoklis, svyruojantis amplitude Vo.  

Antroje straipsnio dalyje tiriamas garso bangø iðspinduliavimas á 
alkûnæ. Viename alkûnës gale yra stûmoklis, kuris svyruoja greièiu 
V=Voe-iωt, antras alkûnës galas sujungtas su begaliniu tiesiu vamzdþiu. 
Nustatomas garso laukas p2, kuris sukuriamas stûmokliu á vamzdá. 
Tariame, kad vamzdyje yra terpë, kurios tankis ρc, o garso sklidimo joje 
greitis cc. 

Uþdavinys taip pat sprendþiamas cilindrinëse koordinatëse. Gautas 
uþdavinio sprendimo rezultatas rodo, kaip keièiasi plokðèiosios bangos 
iðspinduliavimas stûmokliu á alkûnæ ir á vamzdþio tiesiàjà dalá. Gauti 
rezultatai gali bûti panaudoti per alkûnæ pereinanèio garso susilpnëjimui 
nustatyti. 

 


