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Sound power and sound wave radiation by a piston in a curved duct
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Introduction

The solution of the problem consists of two parts. The
first part defines the sound power radiated by a piston in
an elastic duct, the second part identifies sound wave
radiation by a piston in a curved duct.

The problem concerning sound propagation in curved
ducts has drawn special attention of numerous researchers.
On the one hand, this may be due to the fact that this
problem is in the focus since it is the generalisation of the
theory of waveguides. On the other hand, solution of tasks
related to the propagation of waves in curved ducts is of a
practical importance, because almost any system of ducts
includes conjugation of straight duct sections by means of
curves.

Main difficulties occurring when solving tasks may be
traced on the example of the simplest task of sound wave
propagation through a duct having a rectangular cross-
section with rigid walls in the case its longitudinal axis line
curves in circumference. In this case a cylindrical system
of coordinates may be used.

Sound power radiated in an elastic duct by piston
with arbitrary axial-symmetrical velocity
distribution

Let us consider a sound radiation in a duct when in a
cross-section z=0 arbitrary distribution of axial velocity V,(
r) is set. We shall denote the sound velocity that is created
in a duct, through p (r, z). A temporary multiplier exp(-iat)
shall be omitted for a purpose of simplicity.

The radiated sound power is given by

a
P=7xRe I(pvz* )Z:O rdr ;.
0

Here the sign (*) denotes a complex-conjugated
guantity.

Here we shall solve a task in the same approximation
as in the work [1]:

|Za| >> |Zrad |
where Z, is the shell impedance, Z.4 - is the radiation
impedance. Then the zero root of equation will be just
imaginary and small value, i.e., |uga| <<1. The other roots

)

will be real.
The sound pressure in a duct is:
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Here k=aJc is the wave number; p and ¢ are the

density and the velocity of a sound wave propagation in a
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duct; Jo is the Bessel function of zero order; V, is the n-th
wave amplitude in the velocity distribution V,( r).

Let us expand the axial component of the velocity
V,(r) in a series at z=0:

r):anJO(Hnr) (©)

The amplitudes of the velocity V, will be defined by
ratio:
a
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Here F= -ipalZ,.

Substituting expressions (3) and (2) into (1), we shall
obtain:

P = npmRe ZZ = IJO(unr)JO wpt)rdr ¢ (5)
Vk _Hn 0
As indicated in [2], the functions Jo (¢, 1), Where z,

is the root of the dispersion equation, form the orthogonal
system. In the approximation |Z,|>>|Z,aq| the functions

Jo(upr) and J5(unr) are also orthogonal. As a result, the
integral I in Eq. (5) is equal to 0 at n=m, and at n=m
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Substituting into Eqg. (5) J from (6) and V, from (4),
we shall obtain:

(6)
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Eq. (7) defines the sound power, which is radiated to
the duct, if at the cross-section z=0 the distribution of axial
velocities V,( r) is given.

Let us consider as an example the case when Vy(r
)=VoJo(ar). Such a distribution in the first approximation
will be observed at vibrating of the membrane, located in
the plane z=0.

Then an integral in the Eq. (7)
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a
I :VOI Jolar)3g(unr)rdr =

0 (8)
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Substituting expression (8) into (9), we shall obtain:
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In Eq. (9) the multiplier before the sign of the total is
the sound power which is radiated into a duct by a rigid
cylinder, vibrating with the amplitude V,. Under the sign
of the total there is an expression of the n-th wave
radiation coefficient.

Sound wave radiation by piston in curved duct

Many studies [3, 4] are devoted to the problem of a
sound wave propagation in a system consisting of two
straight ducts connected by a bent duct. The simplest
solution is obtained when ducts have rectangular cross-
section and middle axis line of bent part is changing in
circumference. Nevertheless, many difficulties must be
overcome in this problem, as for example, solution of
infinite system of linear equations what greatly
complicates solution and hampers understanding of
physical phenomena.

The given study presents the analysis of simpler
problem: on one end of bent part (knee) of rectangular
cross-section there is a piston which vibrates with the
velocity v=vo e’ where w=27f is the angular frequency.
The other end of the knee (@=#/2) is connected with
infinite straight duct (Fig. 1). Let us define the sound field
p2, which is created by a piston in a straight duct. Such a
problem may be observed in ventilation systems.

Let us assume that in the pipe-line there is a medium
characterised by the density p. and the sound propagation
velocity ¢.. Movement of the medium in the bent part is
going to be analysed in the cylindrical system of the
coordinates (r,, z), where axis z is located perpendicularly
to the plane of the drawing of Fig. 1.

As the study [3] reveals, the sound pressure py(r,¢,z)
in a knee having rigid walls may be written as

A

R1

Fig. 1. Schema of a curved duct.
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pl(r (012)\/(/)
_ZZA”‘”R r)cosk mz(sinv,¢ + By, cosv, @),
m=0n=0 (10)
W (KymRy)
Rn (kynF) = vy (ke F) ==L N (K )
n( rnr) Vn( rmr) an(krle) Vn( rnr)

Here Jv, and Nv, are Bessel and Neumann functions of
the order v, kn=mz/d, where d is the knee width, A, and

B, are some constant amplitudes, Ky, = \Ikcz —kr% is the

radial wave number, k. =a/c. is the medium wave number.
The point above Jv, and Nv, indicates an derivative. The
term exp(-iwt) for the sake simplicity is omitted.

The function R, in (10) satisfies the boundary
conditions of inner (r=R;) and outer (r=R,) walls of the
knee. As the walls are considered to be rigid, so the radial
oscillation velocity of medium particles at their surface
equals to 0. It follows that

_ JVn(krle) NV
’ n
NVn(krle)
when r=R; and r=R,, or
f]V(krle) — J.Vn(krmRZ) .

NVn(krle) NVn(krmRZ)

It is a dispersion equation of the problem under
discussion. Here, in contrast to widely known expressions
not an argument, but an unknown order of the Bessel
function v, is defined.

A number of algorithms of definition v, in the Eq. (11)
are described. One of them [5] uses the reciprocal
procedure and is set by a semi-whole order v,.. In this case
functions Jv, and Nv, are expressed by elementary
functions. By substituting v, to (11), frequencies (kimR1),
which satisfy the equation are defined. Diagrams and
tables which may be used for calculation are given in study
[5]

In accordance with the Euler equation the tangent
oscillation velocity of medium particles equals

L %P _ wrZZA ViR, x

ipcor 8;0 ipe
% cosk 2(COSVy @ — By, SinVy ).

The sound pressure p,(x,r,z) in a straight duct with
rigid walls may be written as

Ry = vy =

(11)

Yo = (12)

pZ(XI‘ Z)
2
—ZZD q Coskpzcoskyg r—Rl)em (13)
m=09=0

where k;=07/(R,-R;) and Dpq are the mode amplitudes
(m,q). The oscillation velocity of medium particles along
the x direction equals

v (orz)=—t P2 _

e ipcw OX
1

=" Dpqk ~k2 —k (14)
Pe® 5

ik2-k2 k2
xcoskpzcoskqy(r—Ry e a9,



The sound pressure and oscillation velocity must
satisfy the boundary conditions from which unknown
amplitudes Ann, By, and Dy,qare defined:

9 =0.,(r.p.2)=Vo,
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%, py(r.e.z)=p,(0,r,2), (19)

v¢(r,¢,z)=vx(0,r,z)

By substituting v,, from (12) as well as p; and p, from
(10) and (13) and v, from (14) to (15) we get:

ZZ AV Ry (K )cosknz = v
n

ipeor <

ZZAmnR
= Zz Dpng €Ok zcoskg (r—Ry),
m q

%ZZAmnVan(krm
m n

:ZZqu,lkg —kf —k§ coskyzcoskq (r—Ry)
m q

Before starting to solve the system (16) we must
remind that functions R,(k.,r) are orthogonal, i.e., satisfy
conditions

¢:

cosk Z=
(16)

r)cosk, 2B, =

dr 0 whenn=j,
J.Rn(krmr)RJ (kemr)— = {I when n = JJ
r nn !
Ry
where
Ry q
r
Inm = I Rr%(krm )_ (17)
Ry

From the first equation (16) we may define Ay,. For
this we multiply both parts of the equation by R;coskzdrdz
and integrate within the limits from R; to R, by r and from
Otodbyz:

ipe (DZZAmnVn I RnR;j —ICOSk zcoskqzdz =

S (18)
:VOIRjdrIcosqudz.
Ry 0

The last integral on the right in (18) changes to 0 at all
g=0. At g=0 it equals to d. Therefore, all A,,,=0 if m=0.
On the basis of orthogonality R, finally we get

iVopeol
Aop = —2E2n, (19)
Vnlnn
where
Ry
0= [Rallcr)ar (20)
R

As m=0, so the second equation in (18) may be written

ZAOan = z Doq Coskg(r —Ry)
n q

Let us multiply both its parts by coskj(r-R;) and
integrate by r from R; to R,. Then, taking in account of
orthogonality of the function cosk,(r-R;), we get:
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2ivgpoxa 1 Inl
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where
Ry
ng = IRn(kcr)coskq(r—Rl)dr,
Ry (22)
1y = R2(ker) 9

Full sound pressure in a straight duct equals
P2 (x,r)=
2|V0pc iJk2 —k X nl ng_ (23)
coskq(r—Ry p
Z nzovn Inn
From (23) it follows that at low frequencies up to the

frequency of the first resonance f;=c/(2d) only a plane
wave may propagate in a duct:

© 2
2i KX |
P2o(x,r)= —IV%pCmEI ¢ Z—In - (24)
n=o Yn'nn

Amplitudes of other waves decay by the law

e_,/kg_kgx '

As it is known, the piston vibrating with the amplitude
Vo, radiates a sound wave in a straight duct having a
pressure

Po(X)=pcCcVo- (25)
The difference of sound pressure levels equals:
2
AL = LZO — LO 20'9 2k ! ,
d &=yl
where L,g =20 Ig& =20 Igﬂ (26)
c C

and p.=2'10" Pa is the reference level of a sound pressure.
Eq. (26) shows the difference of a plane wave radiation by
a piston to a straight duct through the knee relatively to a
sound radiation by a piston directly to a straight duct.

Conclusions

The result obtained shows how the sound wave is
radiated by the piston in the elastic and curved duct. This
analysis may be applied for reducing a noise radiation in a
curved duct.
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Garso galia ir garso bange idspinduliavimas stimokliu a idlenkta
vamzdpio dala (alkiinze)

Reziumé

Darbe nustatyta garso galia, idspinduliuojama stimokliu & tamprg
vamzda. Antroje dalyje tiriamas garso bangg idspinduliavimas stdmokliu
4 idlenkta vamzdpio dala.

Pirmuoju atveju tiriama, kada garsas idspinduliuojamas a vamzda
skerspjlvyje z=0, laisvai pasirenkant adina greita V, ( r). Updavinys
sprendpiamas cilindrinése koordinatése ir gaunama garso galia, kuria &
vamzda idspinduliuoja standus stimoklis, svyruojantis amplitude Vo.
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Antroje straipsnio dalyje tiriamas garso bangg idspinduliavimas a
alkdnz. Viename alkinés gale yra stdmoklis, kuris svyruoja greieiu
V=Ve', antras alk(inés galas sujungtas su begaliniu tiesiu vamzdpiu.
Nustatomas garso laukas p,, kuris sukuriamas stdmokliu & vamzda.
Tariame, kad vamzdyje yra terpé, kurios tankis p., 0 garso sklidimo joje
greitis c..

Updavinys taip pat sprendpiamas cilindrinése koordinatése. Gautas
updavinio sprendimo rezultatas rodo, kaip keieiasi plokdeiosios bangos
iospinduliavimas stimokliu & alkline ir & vamzdpio tiesiaja dala. Gauti
rezultatai gali bdti panaudoti per alkiinae pereinanéio garso susilpngjimui
nustatyti.



