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Introduction 

Many publications of different authors are devoted to 
the research of cylindrical shell vibration and sound 
insulation. 

Most of the publications are of theoretical character. 
The obtained expressions are complicated and do not allow 
the character of dependence of the quantities under study 
upon the change of various parameters to be understood. 
This greatly reduces their value. 

To determine the character of oscillations excitation, 
their propagation in the tube and impedance, special 
equipment was assembled. The report presents the 
methods of measurement performance as well the 
processing and analysis of the results obtained. Tube wall 
oscillations of the experimental equipment have been 
excited concentrically and parameters of propagated 
oscillations of the tube have been measured. It allowed the 
entrance impedance and admittance of the tube at narrow 
frequency bands to be defined. 

In order to determine impedance and admittance by 
calculation method the computer program has been worked 
out. 

The results obtained experimentally and theoretically 
are represented in diagrams. It is obvious from the 
diagrams that computed and experimental meanings of the 
entrance impedance model are in satisfactory agreement. 
Impedance meanings measured during the experiment are 
located slightly higher (are greater) than calculated ones. 

Estimation of the power of vibration radiators 
1.1. A problem of the field of a point-source radiator 

occurs frequently among the calculation schemes used for 
analysis of wave and vibrating processes. The case is that 
numerous constructions under real conditions or 
experimental situations get excited by forces distributed 
along very small areas and there is no possibility to specify 
these forces. A mathematical model in this case consists of 
the solution of the problem about the movement of a 
construction under the action of the concentrated force. 

The most important characteristic defining the level 
excitation of a construction is the energy, radiated by field 
source per time unit, i.e., power of radiator W. 

.uFW &=  
Thus, if the calculation scheme is related to the 

assignment of the magnitude of force F, it is necessary for 
us to define the velocity of a construction at the point of 
fulcrum, i.e. ( )0,tu& . For this purpose it is necessary to 
solve the corresponding problem of the dynamic theory of 

elasticity. In terms of frequency analysis this solution of a 
problem may be written with help of impedance Z(-iω) in 
the form 

( ) .
iwZ

Fu
−

=&  

And, consequently, 
ϕcos12 −= ZFW  

where Z - modulus of impedance, and ϕ its argument.  
It was this circumstance that defined the interest to the 

systematic accumulation of data on impedances of 
different thin-walled constructions. 

1.2. These problems are reasonable in the case of 
function of the corresponding source having no special 
feature, more precisely, not turning into infiniteness (as, 
for example, at the concentrated excitation of the elastic 
semispace, etc.). It is impossible also not to see relation 
between the above-indicated dynamic problem and the 
traditional in theory elasticity problem of determining the 
rigidity coefficient [6]. Such coefficients of rigidity are 
determined easily from statistic problems for any bar 
constructions (e.g., shown in Fig. 1). 

F Cu F EJ
l

u F EJ
l

u F EJ
l

u= = = =, , ,3 24
5

24 83 3 3  

where E - Young’s modulus; J - inertia moment of cross-
section; l - length of a bar. Or in the case of a circular 
plate, shown in Fig. 2a, or rectangular one, depicted in Fig. 
2b. 

S - area of the cross-section of a bar; ρ - material 
density. 

If a shell is damped enough along its whole length, the 
useful estimate then is linked with the impedance of an 
infinite plate, which is being excited by the concentrated 
force [8]. 

.31.28 2chhDZ ρρ ==  
In case resonances manifest themselves in the shell, 

then instead of a formula for a semi-infinite bar at low 
frequencies it is necessary to apply the impedance of a 

 a)  b)  c) 
Fig. 1. Scheme of impedance calculation of thin-walled bars               a 

- console; b - supported span; c - fixed on the edges 
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Finally, it is possible to study an exact expression for 
the impedance of a semi-infinite shell. Equations on this 
question as is shown in the work are written in the form 
(see Fig. 4). 
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Thus it is possible to state that in the elasticity theory the 
extensive and still not duly systematised material on 
rigidity coefficients was accumulated, which allows one to 
approximately estimate impedances of constructions at low 
frequencies in the following way 

( ) ( )./ ωω iCiZ −=−  
where C - rigidity. 

1.3. In the later period due to the development of 
dynamic positing of problems on the theory of rigidity in 
theory and practice of engineering calculations the notion 
of impedance, which was borrowed from the theory of 
electrical circuits, where energetic evaluations are of 
extreme importance, is frequently used [7]. Below we 
present methods of determination of impedances of thin-

walled construction elements and indicate the spheres of 
their practical application. 

If in the damped shell at low frequency only a beam 
(flexural) wave, which corresponds to a normal wave with 
number n=1, gets excited, then useful for comparison 
should be the impedance of a semi-infinite bar (see Fig. 3). 
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=  

where 
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we come to the system of algebraic equations with a matrix 
of coefficients 
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  (2) 
where ∆  - the determinant of the system, and V n3  
obtained ∆  by substituting the third column by a column 
(0, 0, 1). From here we find 
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In the work [4] an expression of the normal impedance 
in a cylindrical shell is obtained. We shall obtain the 
expression for the normal impedance of the cylindrical 
shell in the form: 

An expression for the concentrated force we expand 
according to Fourier 

 
   a)   b)  
Fig. 2. Scheme of impedance calculation of thin-walled plates a - 

round; b - rectangular 

 

Fig. 3. Scheme of impedance calculation of console damped material 

Fig. 4. Scheme for impedance calculation of shell 
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P - the magnitude of the concentrated force and applying 
the operators to Fourier series 

dkeeVu

dkeeVu

dkeeVu

izkin
n

izkin
n

izkin
n

−
∞+

∞−

∞+

∞−

−
∞+

∞−

∞+

∞−

−
+∞

∞−

+∞

∞−

∑∫

∑∫

∑∫

=

=

=

ϕ

ϕ

ϕ

11

22

33

 

( )( )

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

−−−
−

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−×−=

2
2

2
22

02

2
2

2
2

2
2222

224

2

2

2
2

11

t

nnt

nu
n

k
a
nkk

a
nk

k
a
nkkkk

akk

a
nk

miZ ω

 (4) 

When solving the problems on sound insulation of the 
cylindrical shell k is usually represented in the form 
k k k= =1 1 2 2sin sinΘ Θ  where k c1 = ω /  and 
k c2 2= ω /  wave numbers in the media I and II inside 
and outside the shell, respectively, Θ1  and Θ2 the angles 
between the vectors k1  and k2  and the axis r. 
Considering these remarks, (4.27) can be rewritten in the 
form 
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  (5) 

Here 
B
mc

fccmccmccm c
kcncntct π2
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is the critical frequency at which the speed of flexural 
wave propagation is equal to the speed of wave 
propagation in the medium, B - flexural stiffness of the 
plate, from which the shell is formed, f c an n= / 2π the 
frequency at which one longitudinal wavelength in the bar 
will be equal to the circumference length of the shell 
f c ac c= / 2π  the frequency on which length of one sound 

wavelength in the medium will be equal to the 
circumference length of the shell, cc  and Θ  the speed of 

wave propagation and the angle Θ  in the first or the 
second medium. 

Now let us analyse the expression obtained. First we 
shall consider the radial-symmetrical vibrations of the shell 
when n=0. Then 

.
sin

sin
sin1

2
0

2

22

2

2
4

2

2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−Θ

−Θ
−Θ−−=

m

m

f

f

f

fmiZ nn

k
n ω  

This is a well-known expression for the impedance of 
asymmetrical vibrations of the cylindrical shell. Attention 
is attracted to the fact that at low frequencies when f fn >  
the last member makes the main contribution. At the angle 
Θ0 0= arcsinm  becomes infinite ( Z n = ∞  in the absence 
of losses) and when Θ Θn n= arcsin  it is equal to zero. 
These angles are very close to each other since c cn = 0 . 
For a steel shell in the air Θn =3.8o while Θ0 =3.7o. These 
angles have no appreciable effect on sound isolation, 
therefore the impedance may be considered as 
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At 1/ >ffn  the impedance increases when 
frequencies decrease and at ∞+→→ iZf ,0  i.e., the 

impedance becomes elastic. At the frequencies 22
nff >>  
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This is a well-known expression for the impedance of 
a plate. Now let us consider the value of the impedance of 
the shell for n>0. Here as well as at n=0 the domains 
f fn

2 2<<  and f fn
2 2>>  are distinguished. At f fn

2 2>>  
the upper domain of frequencies is defined by the term 

m n f ft c
2 2 2 2⋅ / . At small n when ( )n c n
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∫
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following term in (5) may be neglected. In this case the 
impedance is equal 
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Here we, too, neglect the influence of angles of 
coincidence along the longitudinal and shear waves which 
produce “splashes” nZ  at the angles 

2222
00 /arcsin ffnm c−=Θ  and 

2222 /arcsin ffnm ctt −=Θ  since the range of angle 
variations is small and, besides, it may even become zero 
at sufficiently large. 

At 22 ffn >>  the expression for Z n  depends on the 
values of characteristic frequencies kf  and nf . If 

nk ff > , then 
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It is possible to obtain the expression for Z n  in the 

case of sufficiently large angles Θ . At sin2
0
2Θ >> m and 

sin2 2Θ >> mt  obtain 
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This expression holds true for all of the frequency 
range. It is possible to determine values Z n  in the domain 

of small angles Θ  when sin2 2Θ >> mt . Then impedance 
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It should be noted that the behaviour of Z n  with 
frequency is largely defined by the values of characteristic 
frequencies fk  and fn  since it lies below fn  (due to 

cn cc > ). 

At 22
kn ff >>  and f fn>  the impedance quickly 

approaches the impedance of the plate (6). Quite a 
different character of the relation of fvsZn  is obtained 

when 22
nk ff >>  (a thick-walled shell of the small 

diameter). A case is possible when the value of the third 
term in (5) remains significant while the second term 
attains a significant influence. Then impedance Zn will 
have an elastic character at almost all frequencies. 

Up to the angles of coincidence on longitudinal and 
shear waves formula (8) may be used with high accuracy, 
and beyond these values, formula (7). 

The present experiment, carried out on the special 
installation, gives the character of excitation and vibration 
propagation on the tube by concentrated excitation. The 
input impedance and admittance of the tube at narrow 
frequency bands has been defined too. 

Methods of conducting measuring and data 
processing 

Measuring of dynamic characteristics were conducted 
on an installation specially produced for this purpose (see 
Fig. 5). An installation consists of a steel tube (1) with a 
diameter s=0.72 m, wall thickness n=0.008 m (8 mm) and 
the total length 9 m. One end of the tube is suspended on a 
steel wire (2) to the stand (3) through bampers (4), as is 

shown in Fig.5. The other end is fixed to a special box (5), 
consisting of three sections, and rests on a metal support 
(6). In one section of the box  (6a) the tube is damped with 
wood sawdust, in the other section (6b) with-dust and 
sand, and in the third section (6c) with pure sand. Inside 
the tube on the same end chips and sand may be also 
found. A free not damped and suspended end of the tube 
has a length of ∼6.5m. 

For carrying out measuring the apparatus of Brul and 
Kjear firm from Denmark were used. A model 8208 low 
hammer with an 8200-power generator was used as the 
source of vibration excitation. The hammer is made of 
three changeable strikers of steel, plastic and rubber. To 
expand the range of excitation a steel tube was used. In 
this case the blow duration reached ≈τ 0.2 msec, and the 
power range could change within the limits of 500 to 5000 
N. A signal from the power generator was sent to the 
charge amplifier of model 2635, which allows measurings 
to be performed at low frequencies, starting with 0.2 Hz or 
2 Hz. 

For measuring of the tube wall vibration an 
accelerometer 4370 was used. The given signal through 
the charge amplifier 2635 has been recorded on a four-
channel tape recorder 7005 simultaneously with the signal, 
picked off from hammer power generator. Calibration of 
the velocity generator was carried by means of the 
calibrating vibrator 4294. 

Two ways of tube excitation have been used: hammer 
blows in the middle of the tube from above (at a vertical 
plane) and from one side (at a horizontal plane). The 
measuring points were located as shown in Fig. 5. 

Measurement data processing was carried out by 
means of a two-channel signal analyser of real time model 
2034. As to its parameters and possibilities, the analyser is 
an ideal device for experiments, carried out with the use of 
blow hammer. It allows such negative factors, 
characteristic of blow measurements, as small ratio of a 
response signal to noise and overload, to be eliminated. 

An optimum signal ratio to noise is ensured with the 
help of autosetting of input attenuators. Further ratio 
increase is achieved by the use of window functions: 
pulsed function is used at the power measuring channel 
and exponential function at the acceleration measuring 
channel. 

The window functions applied are shown in Fig. 6. On 
installing the input attenuators of 2034 analyser all signals 

 
Fig. 5. Experimental installation and location of measuring points on 

the tube 



ISSN 1392-2114 ULTRAGARSAS, Nr.2(30). 1998. 

 15

with overload are excluded. In addition, not recorded are 
signals weak at level. Thus, the analyser makes it possible 
to select at data processing optimum as to their level 
values of power and acceleration. As a result the curves of 
power F and of acceleration a depending on the time, input 
impedance eZ , tube admittance Y and eigenspectra F and 
a at narrow frequency bands have been obtained. 

Measurement results and analysis of the problem 
under study 

The curves of power (at the bottom) and acceleration 
(on top) dependence on the time at points 1a and 1, 
accordingly, are shown in Figs 6 and 7. The total record 
length is 125 msec. Here also are well-seen window 
functions: pulsed (at the bottom) and exponential (on top). 

Narrow band spectra of power (at he bottom) and 
acceleration (on top) at excitation points 1a and 1, 
accordingly, are provided in Figs 8 and 9. The analysis 
band equals 8 Hz. The range of frequency changes is equal 
to 0-6.4 kHz. 

As is seen from figures, the power spectrum is even 
and it decreases gradually within the range of given 
frequency. This is defined by the fact that even though the 
duration of a power impulse is small, it is final. A great 

number of resonances can be seen at the frequency 
acceleration curve, especially in the range of frequency 0-3 
kHz. Maximum spectrum meanings in both cases are 
located at the medium frequency range where the first 
longitudinal resonance frequency of the shell ƒl+cl/2πa (a 
tube radius, cl propagation velocity of longitudinal waves 
in a bar) is placed. In our case ƒl=2255 Hz. However, there 
are some differences. In the case of blow from one side 
resonances are more sharply expressed. The value of peaks 
exceeds 20 dB. The zone of the maximum value is located 
at the frequency range of 2-3 kHz. 

The differences observed may be explained, evidently, 
by the conditions of fixing on the edges. In a vertical 
direction one end of the tube is suspended on a string, the 
other one is supported. In a horizontal direction the 
suspended end of the tube has greater mobility (low 
resistance to movement) than in a vertical one. In addition, 
the movement of the second end of the tube in a horizontal 
direction. 

 

Fig. 6. The curves of dependence of the magnitude of force F (at the 
bottom) and acceleration a (on top) at point 1a 

 

Fig. 7. The curves of dependence of the magnitude of force F (at the 
bottom) and acceleration a (on top) at point 1 

 

Fig. 8. Eigenspectrum of force F (at the bottom) and acceleration a 
(on top) at point 1a 

 

Fig. 9. Eigenspectrum of force F (at the bottom) and acceleration a 
(on top) at point 1 
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The fact that resonances are observed right up to high 
frequencies may be explained by insignificant inner loss 
(steel inner loss coefficient η∼10-4) and slight energy loss 
by radiation and at the edges. 

As far as resonance peaks are concerned, their relation 
with rotary or longitudinal tube vibrations is hardly 
probable, since they are weak at excitation and of little 
importance for radial displacement. Most probably, they 
are caused by vibrations of such tubes as “beams” ones or 
by inside radial air resonances. 

As is shown in [3], the system of equations of 
cylindrical shell movement at n=1 may be reduced at low 
frequencies to one equation of flexural vibration 
movement of the tube. 
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where y - displacement of cross-section tube; 2/0 ar = - 

its radius of inertia, ρ/Ecl = - velocity of longitudinal 
vibrations (in a bar), E and ρ Young’s modulus and 
material density, a tube radius. 

It is possible to show that at frequencies lower the 
frequency of the first longitudinal resonance, ƒl=cl/2πa, 
the member, accounting cross-section inertia, may be 
neglected and written as a wave number of flexural 
vibrations of the tube (as a beam) in the form 

.
0rc

k
l

ω
=   (10) 

In the first approximation a model may be scrutinised 
as a console with some effective length leƒ, disposed 
between a free part of the tube (6.5 m) and its full length 
(∼9 m). After calculation of number of variants, it was 
found that a relatively good compliance with the 
experiment is obtained at leƒ=7,5 m. In accordance with 
[11] resonance frequencies are determined from the 
equation 
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The values βq are given in Table 1. 
Table 1. 

β1 β2 β3 β4 β5 β6 

1,875 4,694 7,855 10,996 14,137 17,279 

 
Calculated according to formula (11) frequencies are 

provided in Table 2. 
Table 2 

ƒ1 ƒ2 ƒ3 ƒ4 ƒ5 ƒ6 

9 81 227 444 734 1097 

 
Frequencies are determined and are given in Table 3. 

Table 3 

ƒr Hz 8 72 224 360 528 728 952 1208 

 
It is evident from comparing Tables 2 and 3 that first 

three frequencies and ƒ=728 Hz coincide well with each 
other. This gives the grounds to affirm that a number of 
resonance frequencies in the eigenspectrum of wall 
vibrations are defined by beam vibrations of the tube. 

Some resonance frequencies within spectrum may be 
excited by the inner radial oscillations. For example, at 
n=1 the first resonance frequency ƒl=354 Hz, i.e., is 
located quite close to the measured frequency 360 Hz. 

Some frequencies may be defined by tube resonance 
oscillations at a mode with n=2, since at concentrated 

power modes with n=1 and 2 are subject to easy 
excitation. 

Tube wall vibration measurements, conducted at 
different points, show that general character of vibration 
acceleration changes in the range of given frequency. It 
has been observed that the further from the point of 
excitation the lower the resonance peaks. As an example 
the spectrum of accelerations at p. 2, depicted in Fig. 10, 
located at a distance of ∼1.6 m from the point of excitation. 

 
Fig. 11. Modulus frequency characteristics of input impedance (on 

top) and admittance (at the bottom) of the tube at excitation 
at point 1a 
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The measuring of input admittance Y and impedance Z 
of the tube by concentrated excitation is of great interest. 
Their frequency characteristics are given in Figs 11 and 
12. The curves in Fig. 11 are related to the case of 
excitation of the tube from aside (p. 1a), the curves in Fig. 
12 from above. The same regularity, which is observed in 
vibration spectra, is noted once again. At excitation from 
above in a vertical plane the curve Z (the upper graph in 
Fig. 12) almost does not change at all frequencies, on the 
average. Its value is located in the region 104-2⋅104 
kHz/sec. The most pronounced resonances are placed in 
the area of frequency up to 1 kHz. At excitation from aside 
the spread of the value Z in relation to the mean value is 
significantly higher. For better understanding of the results 
obtained calculations of input admittance Ye and 
impedance Ze of infinite cylindrical shell at concentrated 
excitation have been conducted. The algorithm, given a 
detail study by M. Heckl and D.Gužas [1,2], was taken as 
a basis of calculation. In accordance with it admittance Ye 
may be written in the form 

,
0

n
n

e YY ∑
∞

=

=   (12) 

where n - azimuthal number N. ( )∑=
4

jn kYY  and jk  - 

dispersive equation roots located at the upper half-plane of 
complex values k. Summing up according to azimuthal 
numbers N was limited by values 0N , when 

∑
=

0

0
0

N

n
nYN ε . While calculating, the given accuracy was 

ε=0.01. 
Calculation results are given in Figs 11 and 12. The 

graphs show that at low frequency range from 100 to 1000 
Hz calculated values of input impedance |Ze| modulus are 
located within the limits of the experimental dimensions 
obtained. Later impedance |Ze| decreases within the 
frequency range of longitudinal resonance ƒl=2255 Hz, 

where the length of one longitudinal wave may be located 
into the circumference and later a constant quantity 
Z≈=6⋅103 (kgs/cm) is obtained. 

It should be noted that input impedance of infinite 
plate at concentrated excitation is equal 

2
031.28 hcBmZ mp ρ== , where B and m - flexural 

rigidity and linear density of a plate, 0c  - velocity of 
longitudinal waves. For the plate of which the shell is 
made Zp=6,17⋅103 (kg/s), i.e., it coincides with value |Ze| at 
frequencies higher than ƒl. 

A comparison of an experiment with the theory at 
frequencies ƒ>ƒl show that measured meanings |Ze| are 
located somewhat higher than calculated ones (see Fig. 
12). 

Conclusions 
1. Complex impedances for acoustic estimates of 

radiators of vibration fields were found. 
2. Methods for calculation of these impedances for 

thin-walled constructions were presented. 
3. The experimental installation created gave the 

possibility to investigate the character of vibration and 
propagation along the experimental tube. At concentrated 
excitation also to define its input impedance and 
admittance in the narrow bands of frequencies. 

4. In the installation using an analyser 2034, the 
possibility was created at experimental data processing to 
select optimum as to their level values of power and 
acceleration, as well as those of impedance and admittance 
ant their dependence on time. 

5. The power spectrum is even and it decreases 
gradually with the frequency, since the duration of a power 
impulse is small, it is final. 

6. A great number of resonances can be seen at the 
acceleration spectrum, and, moreover, maximum spectrum 
meanings are located at the medium frequency range 
where the first longitudinal resonance frequency of the 
shell is placed. 

7. The propagation of resonance up to high 
frequencies may be explained by insignificant inner loss of 
a steel tube and slight energy loss by radiation and the 
edges. 

8. Some resonance frequencies within spectrum may 
be excited by the inner radial oscillations. 

9. The further from the point of excitation the lower 
the peaks of resonance. 

10. The results of measurings of input impedances and 
admittances of the tube showed that the same regularity is 
observed also in vibration spectra. 

The most pronounced resonances are placed in the 
area of frequency up to 1 kHz. 

11. A comparison of an experiment with the theory 
showed that measured meanings of impedance are located 
somewhat higher than calculated ones. Therefore for 
determining of impedances and admittances the given 
methods of calculation may be used. 
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D. Gužas 

Cilindrinio kevalo modelio dinaminių charakteristikų teoriniai ir  
eksperimentiniai tyrimai 

Reziumė 

Darbo tikslas - supaprastinti cilindrinių kevalų ir analoginių 
elementų teorinius tyrinėjimus virpesių ir garso perdavimo bei jų 
izoliacijos uždaviniams spręsti. Šiame darbe, taikant modelius, tiriama 
virpesių sužadinimo sutelkta jėga, pobūdis ir jų sklidimas vamzdžiais bei 
cilindriniais paviršiais. 

Daug dėmesio skiriama įėjimo impedanso ir admitanso tyrimui, 
esant sutelktam sužadinimui mažame dažnių diapazone. Tyrimų rezultatai 
pateikti grafikuose. Eksperimentinių tyrimų rezultatai gerai sutampa su 
teorinių impedanso nustatymo metodų rezultatais, pateiktais autoriaus 
darbuose [4, 8]. 

  

 


