ISSN 1392-2114 ULTRAGARSAS, Nr.3(33). 1999.

The modified method for simulation of ultrasonic fields of disk shape transducer

E. Jasiuniené, L. MaZeika

Prof. K. BarSauskas Ultrasound Research Centre
Kaunas University of Technology

Introduction

In non - destructive testing it is important to simulate
ultrasonic field, excited by direct or angular transducers, in
order to predict how waves will propagate in different
mediums. The simplest method for simulation of ultrasonic
fields is direct application of the Huyghens’ principle.
Many authors had theoretically studied pressure
waveforms radiated into different mediums by an idealised
piston source [1-6].

Experimental observations of the pulsed field of a
circular ultrasonic transducer where compared with
calculated results for an ideal piston radiator [6].
Experimental studies showed that field point waveforms
and transmit receive mode responses are in reasonable
agreement with theoretical results calculated assuming
ideal piston behaviour [5, 6]. These studies had also
demonstrated the plane wave and edge wave structure of
the radiated field.

Problem arises when implementing this analytical
model into a numerical form, because the impulse response
function possess singular points. In a far field of the
transducers the maximums of the spatial impulse response
function are very near each other, because when the
distance from the transducer is large, distance from the
centre and the edges of the transducers differs very slightly
and the delay times from the centre and the edges of the
transducer are almost the same. Hence, in order to
calculate the impulse function numerically, high sampling
frequencies are required, resulting in large computation
times [7].

Objective of this work was to modify method for
simulation of ultrasonic fields of a disk shape transducer,
in order to be able to calculate ultrasonic field of the
transducer precisely even in a far field of the transducer. In
the next chapter the model for the calculation of transducer
field in media without boundaries will be presented, the
problems, associated with implementation of the model
will be investigated and the propositions for the solving of
the problems will be made.

Generalised spatial impulse response function
approach

For direct calculation of the time-domain field of a
plane piston in an infinite baffle, the Rayleigh’s equation is
used. This equation expresses the velocity potential at a
field point as the sum of the contributions from elementary
Huyghens sources, each radiating a hemispherical wave
into the fluid [6]:
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where ¢ is the velocity potential, v is the velocity of the
piston, r is the distance from the field point to the surface
element dS, ¢ is the velocity of sound.

The pressure P in a fluid of the density p, is given by
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The pressure due to an arbitrary velocity function v(t)
can be derived by convolution. If the piston velocity V is
uniform over the piston surface, then [6]

P= P

v(t—r/c)=v(t)*s5(t-r/c), 3)
where * indicates convolution.

Velocity potential can be expressed [6]:

#r.t)=v(t)x ¢ (r.t), @)
where the impulse response
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Pressure also can be expressed as a convolution [6]

P(r,t)=v(t)=R(r.t), (6)
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where P, = p— is the pressure impulse response.

The pulsed field of the transducer can be calculated
using the mathematical model based on the spatial impulse
response approach [8]. The spatial pressure impulse
response of the disk transducer with radius R is given by
the following expressions:
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where py — density; R — transducer radius; € - ultrasound
velocity; ty - delay time of the plane wave from the
transducer surface to the point with coordinates x,z; t; -
delay time of the edge wave from the nearest transducer
edge to the point with coordinates X,z; t, - delay time of the
edge wave from the farthest transducer edge to the point
with coordinates X,z.

According to various methods it was shown that
acoustic field of plane disk transducers consists of plane
and edge waves. Such a presentation has been proved to be
valid by many theoretical simulations and practical
experiments [2, 3, 8 - 10]. The whole surface of a piston
generates a direct plane wave, which propagates in
cylindrical region having the piston at its base. From
theedge of the transducer diffracted edge waves are
radiated, which propagate in all directions.

Typical waveforms of the spatial impulse response,
calculated using Eq. 7, are given in Fig. 1. We can see that
a big part of energy is concentrated in three pulses. The
first pulse corresponds to the arrival time of a plane wave
from the surface of a transducer. The second and the third
pulses correspond to the arrival times of edges waves from
the nearest and farthest edges of disk shape transducer.
Outside the direct beam region they correspond to the first
and second pulses, because in this case a plane wave is
absent.
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Fig. 1. Pulse response of disk shape transducer in a homogeneous
medium

The modification of the simulation method

A very important aspect of the model used is that a
magnitude of the velocity potential at some instant t is
proportional to the length of the arc on the transducer
surface (Fig. 2). After a velocity impulse has been applied
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to a piston at t=0, the field at a points Q, or Q; is due to
contributions from points on the piston at the distance ct
from the points Q, or Q;, an arc of a circle on its surface.
So the more of the transducer surface located at thedistance
ct from the point Q, or Q; at the time t, the greater the
spatial impulse response function will be at that time [3]. It
has been shown that the velocity potential ¢ is
proportional to the fraction of equidistant arc included on
the piston surface [6]:

~coct)

#i(r.t) ot (8)

where ¢ is the velocity potential, r is the distance from the
field point to the arc on the transducer surface, &(ct) is the
total angle of the included equidistant arc.

When the distance z from the transducer surface
changes, for all points, which have the same coordinate X,
amplitude of the velocity potential at the same time instant
is due to contributions from the same arc on the transducer
surface. The Eq. 8 is for the velocity potential, and
pressure is the derivative of the velocity potential in time.
So we can assume, that amplitudes of the spatial impulse
response for the same coordinate X are the same and only
the delay times are different. So amplitudes for each
coordinate X can be calculated on the transducer surface,
that is, when z=0, and when the z coordinate changes, we
have to recalculate only the delay times.

As it was stated before, a problem arises
implementing analytical model into a numerical form,
because the impulse response function has singular points.
In this case a question arise, where in the time array to put
maximums of the spatial impulse response, which arrive at
the instants t;, t; and t,, because these times will not
coincide with the used time discretization step.

The biggest allowed sampling step in the time domain
depends from transducer frequency:
1
Nmin f
where N, is the minimal point number in one period, f is

the transducer frequency.
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Fig. 2. Field of the disk transducer at points Q, or Q; is due to
contributions from points on the piston distant ct from points
Qy or Qi, an arc of a circle on its surface
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In order to calculate the delay times tp, t; and t,
precisely, the sampling step in the time domain has to be
decreased, and that automatically increases the number of
points, which has to be calculated:

me

c-At’ (10)
where 7, is the distance from the transducer to the farthest
calculating point, At is the used sampling step.

Using the method proposed spatial impulse response
at the point P(X, z) (Fig. 3, a) is calculated in following

steps:
1. Two points X, and Xg, on the surface of the transducer
are found, from which the delay times of transmitted
rays are equal to the delay times of the edge waves t;
and t, (Fig. 3, b). When the point is outside the
transducer boundaries, then:

Xp=R, Xg=-R; (11)

when the calculating point is inside the transducer
boundaries, then:

Xp=2X-R, Xg=-R. (12)

The step AX for the calculating of the spatial impulse
response is selected:
(xg =)

AX = (13)

n, —1

where n, is the number of calculated points between
tl and tz.

The delay times from the each point on the transducer
surface to the calculated point are found:

ﬂ XSZ +1Z 12
="t
c

where Xg =x; —(Xp +Ax(i—1)).

(14)

Amplitudes of the spatial impulse response for the
point projection to the transducer plane are found
using Eq. 7.

The spatial impulse response is multiplied by the
correction coefficient Kyo,, which takes into account
the discretization step At:

ﬁ. (15)

(ny —1)At

This correction has to be introduced, because we
calculate the same number of points on the spatial
impulse response from t; to t, and that doesn’t depend
on how far the computed point is.

kor =

Z P1(X1, 21)

X X

a b
Fig. 3. Calculation of the transducer spatial impulse response
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6. Amplitudes of the spatial impulse response at the
time instants ty, t; and t, are calculated separately.
Equations for the calculation of the amplitudes of the
spatial impulse response can be derived from Eq. 7.
However, we are interested in a transducer field but

not in the spatial impulse response, so the signal,
transmitted by a transducer has to be convolved with the
spatial impulse response function. Usually convolution is
performed using the Fourier transform, because this
method is faster then convolution in the time domain. If we
want to convolve signals in frequency domain, the signal
has to be sampled with the constant step At, which has to
be small enough in order to get a large accuracy in a far
field of the transducer.

Using the modified method amplitudes and precise
times of maximums of the spatial impulse response where
computed at fixed number of points. So in this case it was
not possible to use convolution in the Fourier domain and
it was necessary to perform convolution in the time domain
(Fig. 4). It gave a better accuracy and the speed of
computations was increased also.

Convolution of two signals in the time domaincan be
expressed using this recurrental formula:

At — At;
Pk-1+n, = Pk-1+n, +(Aimp (Uk—1 +A—tl(uk Uy ))j

(16)
timp —tp
At
p is the acoustical field pressure, U is the excitation signal,
Aimp 18 the amplitude of the impulse, tin, is the time instant,
at which impulse arrives, t, is the time instant, at which the
signal is recorded, At is the signal sampling step, At; is the
delay of impulse from the signal at the some time moment,

N, is the impulse place in array.

+1,

where At =tip, —(tp +At(n, -1)), n,
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Fig. 4. Convolution of two signals in time domain.
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Fig. 5. Transducer field, calculated using ordinary (a) and modified (b) method

In Fig. 5 the field of the 2,5 MHz frequency
transducer is represented calculated using conventional (a)
and modified (b) method. As it can be seen in the pictures
presented, when the field is calculated using conventional
method, in the far field of the transducer errors in the form
of the needles reveals (Fig. 5, a), which, as it was
mentioned before, arise because the maximums of the
spatial impulse response are close each to other.
Meanwhile, after modification of the method, numerical
errors where avoided (Fig. 5, b).

Using modified method computations takes less time,
because amplitudes of the impulse response function are
calculated one time, and delay times are calculated at the
fixed number of points and that doesn’t depend on the
distance from the transducer. Also, the errors of the delay
times at singular points and amplitude fluctuations in the
calculated field where avoided.

Simulation results

As it was mentioned before, often in non-destructive
testing ultrasonic wave propagate through the different
media. So we wanted to investigate, how the field of the
ultrasonic wave changes, after the wave is transmitted
through the different mediums.

To calculate the field of the ultrasonic transducer, the
programs in TURBO PASCAL language have been
developed. Calculation of the field, which has 128x128
points, takes less then 3 minutes using PC with 300 MHz
Pentium processor. The transducer field in Fig.6 is
represented as absolute maximal values of the acoustical
pressure impulse response.
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Simulations were performed for the transducer, which
is most widespread in non-destructive testing. It was
assumed that the transducer radiates pulse with Gaussian
envelope, duration of which was two periods.

Using the described model the ultrasonic field,
radiated by the disc transducer, in various mediums (water,
plexiglas, steel) was calculated. The calculations were
performed for the disk type transducer of the radius
R=5 mm and with the frequency f=3 MHz. In Fig.6 the
simulation results in various mediums are presented: a —
water, c=1,48 mm/us; b - plexiglas, c=2,76 mm/us and ¢ —
steel, c=5,85 mm/ps. From the presented pictures it can be
seen that the structure of the ultrasonic field in various
materials is similar, only the near field of the transducer
ends at different distances from the transducer.

Conclusions

In this paper the method and fast algorithm for
simulation of ultrasonic fields excited by the disk shape
transducers is presented. The model for the calculation of
transducer field in media without boundaries is presented,
the problems, associated with implementation of the model
are investigated and the propositions for the solving of the
problems are made.

After implementation of the modified method
computations takes less time, because amplitudes of the
impulse response function are calculated only once, and
the delay times are calculated at a fixed number of points,
which doesn’t depend on the distance from the transducer.
Also the errors of the delay times at singular points and
amplitude fluctuations in the calculated field where
avoided.
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Fig. 6. Ultrasound field in various mediums (R=5 mm; f=3 MHz)
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E.Jasitiniené L.Mazeika

Patobulintas diskinio keitiklio ultragarso lauky modeliavimo
metodas

Reziume

Straipsnyje apraséme modelj, naudojama keitiklio laukui vienalytéje
aplinkoje apskaiciuoti, inagrin¢jome su jo diegimu susijusias problemas
ir pateikéme pasitlymy, kaip juy iSvengti. Sitilomas metodas remiasi
diskinio keitiklio akustinio lauko modeliavimo metodo modifikacija.
Impulsinis keitiklio laukas homogeninéje aplinkoje gali bati apskai¢iuotas
naudojantis matematiniu erdviniy impulsiniy charakteristiky skai¢iavimo
modeliu.

Pasitlytas ultragarsinio keitiklio lauko skai¢iavimo metodas yra
pakankamai greitas, nereikia dideliy kompiuteriniy resursy, todél galima
modeliuoti asmeniniu kompiuteriu. Skai¢iavima paspartina pasitlytas
algoritmas, kuriuo  naudojantis impulsinio lauko  amplitudés
skaiCiuojamos tik viena karta, o laikai nepriklausomai nuo atstumo iki
keitiklio skai¢iuojami fiksuotame tasky skaiciuje. Pasitilytame algoritme
pasalintos skaitmeninés paklaidos, atsirandanéios dél singuliariniy
keitiklio impulsinés charakteristikos tasky, todél buvo iSvengta laiky
skai¢iavimo paklaidy ir amplitudiniy fliuktuacijy apskai¢iuotame lauke.
Straipsnyje pateiktos kompiuterinio modeliavimo metodikos ir rezultatai.
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