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Introduction 
In non - destructive testing it is important to simulate 

ultrasonic field, excited by direct or angular transducers, in 
order to predict how waves will propagate in different 
mediums. The simplest method for simulation of ultrasonic 
fields is direct application of the Huyghens’ principle. 
Many authors had theoretically studied pressure 
waveforms radiated into different mediums by an idealised 
piston source [1-6]. 

Experimental observations of the pulsed field of a 
circular ultrasonic transducer where compared with 
calculated results for an ideal piston radiator [6]. 
Experimental studies showed that field point waveforms 
and transmit receive mode responses are in reasonable 
agreement with theoretical results calculated assuming 
ideal piston behaviour [5, 6]. These studies had also 
demonstrated the plane wave and edge wave structure of 
the radiated field. 

Problem arises when implementing this analytical 
model into a numerical form, because the impulse response 
function possess singular points. In a far field of the 
transducers the maximums of the spatial impulse response 
function are very near each other, because when the 
distance from the transducer is large, distance from the 
centre and the edges of the transducers differs very slightly 
and the delay times from the centre and the edges of the 
transducer are almost the same. Hence, in order to 
calculate the impulse function numerically, high sampling 
frequencies are required, resulting in large computation 
times [7]. 

Objective of this work was to modify method for 
simulation of ultrasonic fields of a disk shape transducer, 
in order to be able to calculate ultrasonic field of the 
transducer precisely even in a far field of the transducer. In 
the next chapter the model for the calculation of transducer 
field in media without boundaries will be presented, the 
problems, associated with implementation of the model 
will be investigated and the propositions for the solving of 
the problems will be made.  

Generalised spatial impulse response function 
approach 

For direct calculation of the time-domain field of a 
plane piston in an infinite baffle, the Rayleigh’s equation is 
used. This equation expresses the velocity potential at a 
field point as the sum of the contributions from elementary 
Huyghens sources, each radiating a hemispherical wave 
into the fluid [6]: 
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where φ is the velocity potential, v is the velocity of the 
piston, r is the distance from the field point to the surface 
element dS, c is the velocity of sound. 

The pressure P in a fluid of the density ρ, is given by  
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The pressure due to an arbitrary velocity function v(t) 
can be derived by convolution. If the piston velocity v is 
uniform over the piston surface, then [6] 
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where ∗ indicates convolution. 
Velocity potential can be expressed [6]: 
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where the impulse response 
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Pressure also can be expressed as a convolution [6] 
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where 
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ρ  is the pressure impulse response. 

The pulsed field of the transducer can be calculated 
using the mathematical model based on the spatial impulse 
response approach [8]. The spatial pressure impulse 
response of the disk transducer with radius R is given by 
the following expressions: 
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where ρ0 – density; R – transducer radius; c - ultrasound 
velocity; t0 - delay time of the plane wave from the 
transducer surface to the point with coordinates x,z; t1 - 
delay time of the edge wave from the nearest transducer 
edge to the point with coordinates x,z; t2 - delay time of the 
edge wave from the farthest transducer edge to the point 
with coordinates x,z. 

According to various methods it was shown that 
acoustic field of plane disk transducers consists of plane 
and edge waves. Such a presentation has been proved to be 
valid by many theoretical simulations and practical 
experiments [2, 3, 8 - 10]. The whole surface of a piston 
generates a direct plane wave, which propagates in 
cylindrical region having the piston at its base. From 
theedge of the transducer diffracted edge waves are 
radiated, which propagate in all directions.  

Typical waveforms of the spatial impulse response, 
calculated using Eq. 7, are given in Fig. 1. We can see that 
a big part of energy is concentrated in three pulses. The 
first pulse corresponds to the arrival time of a plane wave 
from the surface of a transducer. The second and the third 
pulses correspond to the arrival times of edges waves from 
the nearest and farthest edges of disk shape transducer. 
Outside the direct beam region they correspond to the first 
and second pulses, because in this case a plane wave is 
absent. 

The modification of the simulation method 
A very important aspect of the model used is that a 

magnitude of the velocity potential at some instant t is 
proportional to the length of the arc on the transducer 
surface (Fig. 2). After a velocity impulse has been applied 

to a piston at t=0, the field at a points Qv or Qi is due to 
contributions from points on the piston at the distance ct 
from the points Qv or Qi, an arc of a circle on its surface. 
So the more of the transducer surface located at thedistance 
ct from the point Qv or Qi at the time t, the greater the 
spatial impulse response function will be at that time [3]. It 
has been shown that the velocity potential φi is 
proportional to the fraction of equidistant arc included on 
the piston surface [6]: 
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where φ is the velocity potential, r is the distance from the 
field point to the arc on the transducer surface, θ(ct) is the 
total angle of the included equidistant arc.  

When the distance z from the transducer surface 
changes, for all points, which have the same coordinate x, 
amplitude of the velocity potential at the same time instant 
is due to contributions from the same arc on the transducer 
surface. The Eq. 8 is for the velocity potential, and 
pressure is the derivative of the velocity potential in time. 
So we can assume, that amplitudes of the spatial impulse 
response for the same coordinate x are the same and only 
the delay times are different. So amplitudes for each 
coordinate x can be calculated on the transducer surface, 
that is, when z=0, and when the z coordinate changes, we 
have to recalculate only the delay times.  

As it was stated before, a problem arises 
implementing analytical model into a numerical form, 
because the impulse response function has singular points. 
In this case a question arise, where in the time array to put 
maximums of the spatial impulse response, which arrive at 
the instants t0, t1 and t2, because these times will not 
coincide with the used time discretization step.  

The biggest allowed sampling step in the time domain 
depends from transducer frequency: 
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where nmin is the minimal point number in one period, f is 
the transducer frequency. 
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Fig. 2. Field of the disk transducer at points Qv or Qi is due to 

contributions from points on the piston distant ct from points 
Qv or Qi , an arc of a circle on its surface 
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Fig. 1. Pulse response of disk shape transducer in a homogeneous 

medium 
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In order to calculate the delay times t0, t1 and t2 
precisely, the sampling step in the time domain has to be 
decreased, and that automatically increases the number of 
points, which has to be calculated: 
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where zmx is the distance from the transducer to the farthest 
calculating point, ∆t is the used sampling step. 

Using the method proposed spatial impulse response 
at the point P1(x, z) (Fig. 3, a) is calculated in following 
steps: 

1. Two points xp and xg, on the surface of the transducer 
are found, from which the delay times of transmitted 
rays are equal to the delay times of the edge waves t1 
and t2 (Fig. 3, b). When the point is outside the 
transducer boundaries, then: 

;     , RxRx gp −==   (11) 
when the calculating point is inside the transducer 
boundaries, then: 

RxRxx gp −=−=      ,2 . (12) 

2. The step ∆x for the calculating of the spatial impulse 
response is selected: 
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where nx is the number of calculated points between 
t1 and t2. 

3. The delay times from the each point on the transducer 
surface to the calculated point are found: 
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where ( ))1(1 −∆+−= ixxxx ps . 
4. Amplitudes of the spatial impulse response for the 

point projection to the transducer plane are found 
using Eq. 7.  

5. The spatial impulse response is multiplied by the 
correction coefficient kkor, which takes into account 
the discretization step ∆t: 
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This correction has to be introduced, because we 
calculate the same number of points on the spatial 
impulse response from t1 to t2 and that doesn’t depend 
on how far the computed point is. 

6. Amplitudes of the spatial impulse response at the 
time instants t0, t1 and t2 are calculated separately. 
Equations for the calculation of the amplitudes of the 
spatial impulse response can be derived from Eq. 7. 
However, we are interested in a transducer field but 

not in the spatial impulse response, so the signal, 
transmitted by a transducer has to be convolved with the 
spatial impulse response function. Usually convolution is 
performed using the Fourier transform, because this 
method is faster then convolution in the time domain. If we 
want to convolve signals in frequency domain, the signal 
has to be sampled with the constant step ∆t, which has to 
be small enough in order to get a large accuracy in a far 
field of the transducer.  

Using the modified method amplitudes and precise 
times of maximums of the spatial impulse response where 
computed at fixed number of points. So in this case it was 
not possible to use convolution in the Fourier domain and 
it was necessary to perform convolution in the time domain         
(Fig. 4). It gave a better accuracy and the speed of 
computations was increased also.  

Convolution of two signals in the time domaincan be 
expressed using this recurrental formula:  
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p is the acoustical field pressure, u is the excitation signal, 
Aimp is the amplitude of the impulse, timp is the time instant, 
at which impulse arrives, tp is the time instant, at which the 
signal is recorded, ∆t is the signal sampling step, ∆ti is the 
delay of impulse from the signal at the some time moment, 
nr is the impulse place in array. 
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Fig. 3. Calculation of the transducer spatial impulse response 
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Fig. 4. Convolution of two signals in time domain. 
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In Fig. 5 the field of the 2,5 MHz frequency 
transducer is represented calculated using conventional (a) 
and modified (b) method. As it can be seen in the pictures 
presented, when the field is calculated using conventional 
method, in the far field of the transducer errors in the form 
of the needles reveals (Fig. 5, a), which, as it was 
mentioned before, arise because the maximums of the 
spatial impulse response are close each to other. 
Meanwhile, after modification of the method, numerical 
errors where avoided (Fig. 5, b). 

Using modified method computations takes less time, 
because amplitudes of the impulse response function are 
calculated one time, and delay times are calculated at the 
fixed number of points and that doesn’t depend on the 
distance from the transducer. Also, the errors of the delay 
times at singular points and amplitude fluctuations in the 
calculated field where avoided. 

Simulation results 
As it was mentioned before, often in non-destructive 

testing ultrasonic wave propagate through the different 
media. So we wanted to investigate, how the field of the 
ultrasonic wave changes, after the wave is transmitted 
through the different mediums.  

To calculate the field of the ultrasonic transducer, the 
programs in TURBO PASCAL language have been 
developed. Calculation of the field, which has 128x128 
points, takes less then 3 minutes using PC with 300 MHz 
Pentium processor. The transducer field in Fig.6 is 
represented as absolute maximal values of the acoustical 
pressure impulse response.  

Simulations were performed for the transducer, which 
is most widespread in non-destructive testing. It was 
assumed that the transducer radiates pulse with Gaussian 
envelope, duration of which was two periods. 

Using the described model the ultrasonic field, 
radiated by the disc transducer, in various mediums (water, 
plexiglas, steel) was calculated. The calculations were 
performed for the disk type transducer of the radius      
R=5 mm and with the frequency f=3 MHz. In Fig.6 the 
simulation results in various mediums are presented: a – 
water, c=1,48 mm/µs; b - plexiglas, c=2,76 mm/µs and c – 
steel, c=5,85 mm/µs. From the presented pictures it can be 
seen that the structure of the ultrasonic field in various 
materials is similar, only the near field of the transducer 
ends at different distances from the transducer.  

Conclusions 
In this paper the method and fast algorithm for 

simulation of ultrasonic fields excited by the disk shape 
transducers is presented. The model for the calculation of 
transducer field in media without boundaries is presented, 
the problems, associated with implementation of the model 
are investigated and the propositions for the solving of the 
problems are made. 

After implementation of the modified method 
computations takes less time, because amplitudes of the 
impulse response function are calculated only once, and 
the delay times are calculated at a fixed number of points, 
which doesn’t depend on the distance from the transducer. 
Also the errors of the delay times at singular points and 
amplitude fluctuations in the calculated field where 
avoided.  

    
a      b 

Fig. 5. Transducer field, calculated using ordinary (a) and modified (b) method 
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E.Jasiūnienė L.Mažeika 

Patobulintas diskinio keitiklio ultragarso  laukų modeliavimo 
metodas 

Reziume 

Straipsnyje aprašėme modelį, naudojamą keitiklio laukui vienalytėje 
aplinkoje apskaičiuoti, išnagrinėjome su jo diegimu susijusias problemas 
ir pateikėme pasiūlymų, kaip jų išvengti. Siūlomas metodas remiasi 
diskinio keitiklio akustinio lauko modeliavimo metodo modifikacija. 
Impulsinis keitiklio laukas homogeninėje aplinkoje gali būti apskaičiuotas 
naudojantis matematiniu erdvinių impulsinių charakteristikų skaičiavimo 
modeliu. 

Pasiūlytas ultragarsinio keitiklio lauko skaičiavimo metodas yra 
pakankamai greitas, nereikia didelių kompiuterinių resursų, todėl galima 
modeliuoti asmeniniu kompiuteriu. Skaičiavimą paspartina pasiūlytas 
algoritmas, kuriuo naudojantis impulsinio lauko amplitudės 
skaičiuojamos tik vieną kartą, o laikai nepriklausomai nuo atstumo iki 
keitiklio skaičiuojami fiksuotame taškų skaičiuje. Pasiūlytame algoritme 
pašalintos skaitmeninės paklaidos, atsirandančios dėl singuliarinių 
keitiklio impulsinės charakteristikos taškų, todėl buvo išvengta laikų 
skaičiavimo paklaidų ir amplitudinių fliuktuacijų apskaičiuotame lauke. 
Straipsnyje pateiktos kompiuterinio modeliavimo metodikos ir rezultatai. 
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Fig. 6. Ultrasound field in various mediums (R=5 mm; f=3 MHz) 


