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Normal wave diffraction in the rounded section of a waveguide
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Introduction

An issue of sound wave propagation in curved ducts
has attracted attention of numerous researchers. The
problem is of serious interest since it is the generalization
of the theory of waveguides, Solution of problems related
to wave propagation in curved ducts are of special
practical importance, since almost any piping system
includes conjugations of straight sections by means of
curved ones. Normal wave propagation in the curved bend
section of the waveguide will be studied using methods
analogous to those as in our paper [1]. Plane wave
propagation in the elbow bend was investigated in [1].
Plane wave sound energy is directed towards longitudinal
axis along the front.

Therefore it is reasonable to analyse issues concerning
curved ducts with regard to the application of
mathematical methods for normal waves.

It should be noted that there are other methods for
computation of sound propagation in curvilinear
waveguides. In some works, for example [2,3], a general
method for studying of heterogeneous waveguides — a
method of transversal cross section — is applied. However,
in a general case a rather bulky algorithm, requiring the
solution of an infinite system of differential equations,
enables to obtain numerical results.

Theory of normal wave diffraction in curved ducts

Further we shall study a normal wave propagating
along a waveguide with a constant cross-section. Due to
the separability of variables in both rectangular and
cylindrical coordinates it is possible to see the single wave
of m-th order as an initial exciting field:
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Further the m index shall be omitted, taking into
account the separability of the corresponding coordinates
and accepting the above-introduced designations. Thus the
disseminated field in the semi-finite rectilinear section p,
shall be written without the index m in the form of
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and the one passing through the rounded section of the part
in the form of p;
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Here everywhere the above-introduced notations and
the condition are used
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which expresses the possibility of realization of the m-th
mode in the semi-infinite waveguide, i.e., the non-zero
condition of excitation.

As in the previous case instead of the coefficients we
shall search for p;(y) and v(y). From the boundary
conditions at the joint of the curvilinear and the first
rectilinear sections
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then with the help of Fourier’s theorem we shall obtain
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and, consequently
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In a similar way, instead of the system of transmission
coefficients /4, we shall introduce the functions p,(y) and
V,(Y) /the distribution of pressure and velocity of particles
in the second cross-section, i.e., at the joint of the
curvilinear section and the second semi-waveguide/. From
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the Euler’s equation [1] we shall find coefficients £,
expressing them in terms of V,(Y):
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The equations (7)-(9) enable the boundary conditions
for a problem on a wave field in the curvilinear section of
a waveguide to be described. The field in that section must
satisfy a wave equation, described in the cylindrical
coordinates

LA P i JPEPI
ra a r? 4% (10)
at the following boundary conditions
p(r.0)=pi(r-R)
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Here ¢, is the angle of bending of the curvilinear
section, R; is the inferior of the rounding radii, R,=R;+a is
the outer radius of the rounded part of the waveguide.

As is seen, the boundary conditions for the field
p(r,0,z), in the essence, are the condition for the jointing of
the wave fields on the boundaries of the rectilinear and
rounded sections of the waveguide.

The solution of the wave equation (10) for the
curvilinear section may be described by means of the
separation of the variables in the form of the following
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omitted everywhere. Here j;, are the separation constant of
the variables that are forming the series of the eigenvalues
[4]. From the wave equation (10) we shall obtain by
Fourier’s method the following problem for radial
components p(s, r) , i.e., for eigenforms of the given
Sturm-Liouville problem
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The exact solution of this equation shall be described
by means of Bessel’s functions J, (K;r)and Neumann’s

functions N, _ (K,r)in the following form

p(yn.r)= Jy, (Klr)Nyn (KiRy)- N, (Klr)‘jyn (KiRy )
(14)

Here the values j, shall be considered as the functions
of KR, which, as we have denoted in the first chapter,
shall be considered as the solution of a dispersion
equation. We shall describe this equation taking into
consideration that similarly to the ordinary waveguide
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It has the complex roots in the frequencies lower than the
critical ones. The transition of the constant of propagation
7 to the complex area takes place through the zero as in
the direct waveguide, therefore the critical frequencies are
given by

Jo (KR INo (KiRy ) = No (KiRy J3o(KiR; ) =0,
the solution of which was undertaken above and it is good
for the given case of the higher or normal wave.

If the values j, form the numerous eigenvalues, the

detected system of functions p(j,r) shall form the
complete orthogonal system, i.e.,
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where N, is the essence of the norm of the eigenforms.

The selected form of the solution of a problem allows
the transition to the traveling waves with the help of the
Euler’s formulae. In this case the angular distribution of
pressure may be described in the form of

an©e'7”9 + bn©e_'7“9 , thus presenting the wave in terms of
the incident and reflected waves.

Now let us start with the adjustment of solutions,
described differently in the various sections of the
waveguide channel. By means of the boundary conditions
(11) using the solution (12) we shall obtain four equations:
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At first it is convenient to consider the last two
equations. By means of integral transformation with an
account of orthogonality of the eigenmodes p()/n,r) we

shall obtain
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By solving this system of algebraic equations we shall
obtain @, and b,. Inserting a, and b, in the first pair of
equations (12), we shall obtain
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The values pi(r-R;) and py(r-R;) are self-expressed
through v,(y) and v,(y) exactly like in the plane wave case

[1]. The given system is described in the following form
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This system of integral equations can be solved by
using the methods of mathematical physics, elaborated for
one equation, for example, by means of resolving or
reduction to the system of algebraic equations. The latter
method, as it is known, has several variants of
implementation. The method of change of infinite series in
expressions for kernel of integral transformations by finite
series (by means of truncation) is more convenient. This
method is known also as the change of exact value of a
kernel by its approximation, which leads the kernel to the
degenerated form.

Conclusions

For studying of propagation of normal wave we
obtained a convenient system of integral equations for
computation of diffraction of these waves. Normal wave
diffraction computation allows the principles of sound
wave propagation to be identified in the curved duct
section when solving issues of sound isolation.
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D. Guzas, E. Jotautiené

Normaliosios bangos difrakcija iSlenktoje bangolaidZio posiikio
dalyje

Reziumé

Metodais, panaSiais kaip ir anksCiau skelbtame straipsnyje [1],
tirlame normaliaja banga, sklindanéia islenktoje pastovaus skerspjuvio
bangolaidzio postikio dalyje. Sprendziant uzdavinius stac¢iakampése arba
cilindrinése koordinatése, kintamuosius dydzius galima iSskirstyti, todél
pradinj lauka suZadinanéia m-taja banga galima tirti atskirai.

Bangy lauko sklidimo islenktoje posikio dalyje uzdavin
sprendziame cilindrinése koordinatése, kai krastinés salygos formuojamos
tarp tiesiosios ir i§lenktosios bangolaidzio daliy.

Banginés lygties uzdavinys sprendziamas kintamyjuy atskyrimo
metodu ir iSreiskiamas eilute.

Pagal Eulerio formules parinkta sprendimo forma leidzia pereiti prie
béganciyjy bangy. Laukas vaizduojamas krintanciaja ir atsispindinciaja
bangomis. Pasinaudojant kraStinémis salygomis, sprendziamos banginés
lygtys jas integruojant. Gaunama patogi integraliniy lygéiy sistema
normaliyjy bangy difrakcijai apskaiciuoti.

Sprendziant triuk§mo mazinimo klausimus, normaliyjy bangy
difrakcijos skaic¢iavimai leidzia nustatyti garso bangy sklidimo islenktoje
vamzdzio dalyje principus.
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