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Introduction 
Transient evoked otoacoustic emissions (TEOAE) are 

low-level sounds produced by the healthy inner ear in 
response to a transient stimulus such as a short acoustic 
click  1. It is believed that outer hair cells within the 
cochlea are involved in complex active amplification 
mechanisms of weak incoming sound vibrations. The 
TEOAE generation is assumed to be a partial product of 
this amplification [1]. Several studies have evidenced that 
the presence of TEOAE correlates with the hearing level 
[1,2,3,4,5]. While this relationship is reported to be 
frequency specific, the relationship is too weak to predict 
the pure tone hearing levels. Nevertheless, TEOAE 
appeared to be useful in screening tests in neonates [7], in 
population exposed by noise [8] and to monitor the 
influence of drugs [9]. 

The detection of TEOAE is difficult because of noise 
in the recorded signal. The performance can, however, be 
improved by looking into separate frequency bands and 
time intervals and combining extracted parameters 
[10,11,12,13]. An average of cross correlation coefficients, 
as calculated between components of successive 
subaverages after splitting them into three frequency bands 
and windowing in time has been used as a criterion for 
TEOAE detection [12,13]. The TEOAE generation is well 
known to be closely related with nonlinearities which are 
present in the cochlea and which are responsible for the 
high dynamic range of the hearing system. Thus, it would 
be natural to think about more complex relationship than 
linear in associating hearing level and time-frequency 
features extracted from TEOAE. So far, the most published 
attempts to model the mentioned association have relied on 
linear relationship and they have used linear multivariate 
models [4,6] or simple averaging of features [12,13]. In 
one study by Buller and Lutman [15] an artificial neural 
network (ANN) was used in TEOAE classification. The 
task for the neural network was in this case to mimic a 
human expert in classifying the shapes of TEAOE 
waveforms into four beforehand-described classes. In our 
study we have used a neural network, which used a set of 
TEOAE features as inputs and audiometric data as the 
targets in the training procedure. 

The purpose of this study is to compare two 
approaches in separation of normal and hearing impaired 
subjects: a linear and a more complex, which could 
account not only for linear, but also for possible nonlinear 
association of features extracted from TEOAE to hearing 

level as obtained from pure tone audiometry. Artificial 
neural networks are known to be capable to realize any 
complex relationship, when sufficient amount of training 
data is available [14]. Thus a nonlinear classifier was 
established by training of an ANN and for comparison a 
linear classifier implemented as a simple average of the 
features. 

Material and methods 
A. Database  

A database consisting of 5213 TEOAE records was 
collected during the health screen of 65604 subjects in the 
Norwegian county of Nord–Trøndelag (HUNT) [5,6]. The 
ILO92 Otodynamics analyzer was used for recording of 
TEOAE data and air conduction pure tone audiograms 
were recorded using Interacoustics AD25 automatic 
audiometers. The audiometric criterion used to separate 
normal hearing from hearing impaired subjects was chosen 
as 30dB of mean hearing level as obtained at the 
frequencies 0.5, 1, 2 and 4kHz  (MHL). Based on that 
separation level a total of 4404 subjects were classified as 
having normal hearing while the remaining 809 were 
classified as a having impaired hearing. 

 
B. Feature extraction procedure 

The initial problem in detecting TEOAE is to establish 
a criterion according to which TEOAE can be recognized. 
A TEOAE response exhibit, however, high intersubject 
variability in shape, which makes it difficult to define 
general criteria for detection. In addition, TEOAE 
responses are very weak signals buried in environmental, 
subject generated and noise of recording hardware. 
Averaging is, therefore, used to increase the signal- to- 
noise ratio. An example of TEOAE record consisting of 
two subaverages is shown in fig.1. This response has been 
achieved by averaging 1200 sweeps after which a close 
similarity between the subaverages was obtained 
evidencing stimulus synchronous activity that is 
interpreted as TEOAE. 

The most popular criterion for TEOAE detection is the 
cross correlation coefficient between the two subaverages. 
If the calculated cross correlation coefficient between the 
two subaverages exceeds some predetermined threshold, it 
is considered as an evidence of presence of deterministic 
activity in the recorded signal and a conclusion about 
detected TEOAE is made. The TEOAE response shown in 
fig.1 can be clearly distinguished with a high cross 
correlation value, but this is not always the case. The 
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calculated cross correlation value depends on both initial 
signal-to-noise ratio and available averaging time (i.e. 
number of sweeps in the average). Long averaging time is 
often difficult to maintain in the clinical practice, 
especially in child investigations. In order to reduce further 
the influence of the remaining noise in the averaged signal, 
additional measures can be considered, which use a priori 
information on TEOAE. Many investigations [13,10,20] 
have shown that TEOAE exhibit frequency dependant 
latency: where higher frequencies have shorter post-
stimulus time while lower frequencies have longer. This 
particular feature of TEOAE can be also observed in the 
example of TEOAE subaverages shown in fig.1, where 
oscillations of higher frequency, starting 3ms post-
stimulus, precede oscillations with lower frequency. 

Fig.1. Example of TEOAE subaverages as recorded from a normal 
hearing subject having mean hearing threshold 9dB 

In an earlier investigation we have shown that 
decomposition of the time-frequency plane into regions of 
interest improves the detection substantially [17]. One 
possibility to form regions of interest in time frequency 
plane is to split the signal into frequency bands and to 
apply specially designed time windows to each bandpass 
filtered component of the signal. This procedure can be 
very efficiently accomplished in the wavelet domain due to 
the existence of fast wavelet decomposition algorithms 
[21]. 

The discrete wavelet transform maps the signal into 
the time-frequency plane according to: 
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where ψ(n) denotes the analysis wavelet and wj(k) are 
wavelet coefficients representing the signal at the 
decomposition level j and time index k. 

Choosing wavelet coefficients from decomposition 
level j is equivalent to bandpass filtering of the signal, 
while choosing wavelet coefficients with indexes from k to 
l from given decomposition level is equivalent to time 
windowing. The fast orthogonal discrete wavelet transform 
decomposes the signal by definition into octave frequency 
bands, which can not be chosen independently. The time 
windowing in wavelet domain can, however, be 
accomplished with no restriction in the choice of the 
indexes k and l. 

The choice of time indexes k and l in our TEOAE 
specific feature extraction problem was based on the data 
from a study of Janušauskas et. al [13], where the average 

time locations of TEOAE in a database of normal hearing 
subjects was studied by use of an ensemble correlation 
technique. The time windowing was thus carried out 
directly in wavelet domain by selecting or, equivalently, by 
applying the rectangular windows to the wavelet 
coefficients from the given level of decomposition (as seen 
in fig. 2). The features, cross correlation coefficients 
between two windowed frequency components of two 
TEOAE subaverages A and B in the wavelet domain, are 
then obtained as: 
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where wA,j and wB,j  are wavelet coefficients of subaverages 
A and B from level j and where k and l are indexes of the 
first and last coefficient in the respective window. 

Fig.2. Three levels of wavelet decomposition of two subaverages and 
corresponding time windows. The two subaverages A and B 
are shown as open and filled circles, respectively. Solid lines 
indicate corresponding time windows. The cross correlation 
values ρj with and without windows (in parentheses) are 
indicated. 

For the evaluation we have chosen the three levels of 
decomposition, which contain most of the TEOAE 
response energy. These levels represent the octave 
frequency bands whose central frequencies are 1.15kHz, 
2.2kHz and 4.4kHz, respectively. The high frequency 
TEOAE components are represented by the time region 
2.5-6.5ms from the 2nd level, the middle frequency 
components by the time region 2.5-10ms from the 3rd 
level and low frequency components by the time region 5-
14.5ms from the 4th level. An example of TEOAE 
subaverages transformed into wavelet domain is shown in 
fig. 2. It can be seen that the highest similarity between the 
wavelet coefficients and equivalently the highest cross 
correlation appears in rectangular windows as defined by 
Janušauskas et. al. The calculated cross correlation values 
between the TEAOE subaverages with and without 
windows, as indicated in the fig. 2, exemplify the 
improvement achieved by windowing. 

The three cross correlation coefficients ρj, which 
represent each recorded signal consisting of two 
subaverages with 512 time samples each are in the 
following used as TEOAE features. By this procedure we 
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reduced the dimensionality of our problem in the TEAOE 
detection algorithm. 

 
C. Artificial neural network for classification 

Artificial neural networks are used in applications, 
where predetermined analytical relationships are difficult 
to establish because of lack of knowledge about the 
phenomenological background, but where rich empirical 
datasets are available for teaching of the network of the 
desired relationship. The artificial neural network is 
represented by a structure, consisting of units called 
neurons and connections called weights as seen in fig. 3. 
Each neuron is a unit that computes the weighted inputs 
from neighboring neurons. The output of a neuron depends 
on the input values and an activation function. This output 
can in turn serve as one of the input values for other 
neurons. The weights are multiplicative coefficients that 
can change the influence of one neuron's output to another 
neuron's input. By changing the connection weights during 
the training procedure a very complex, possibly nonlinear, 
relationship between the network inputs and the output can 
be established. 
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Fig.3. Schematic representation of a three layer ANN 

The multilayer perceptron was chosen due to its ability 
to model both simple and very complex functional 
relationships [14]. We restricted, however, ourselves to 
consider artificial neural network having only one hidden 
layer and only hyperbolic tangent activation functions. 

The output of this network y can be written as: 
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where ρj denotes the feature vector parameters with ρ0 =1,  
J is the number of inputs, K is the number of hidden 
neurons, βjk are the weights between inputs and hidden 
layer and αk are the weights between hidden and output 
layers. 

The neural network training procedure is based on 
adjusting the weight parameters αk and βjk. The neural 
network is considered to be trained when it gives small 
errors when applied on the training set of data but also 
responds properly to a new testing set not used in the 
training procedure. When a network is able to perform as 

well on both the testing and the training sets of data, we 
say that the network generalizes well. In order to improve 
the generalization, training with regularization was used. 
The regularization method constrains the size of the 
network weights, causing the network response to be 
smooth. The Bayesian technique of regularization 
proposed by D. Foresee and F. Hagan [16] to improve 
generalization was used in our case. In addition, this 
regularization procedure gives the number of weights in 
the neural network that are effectively used in reducing the 
error function. This feature can be employed to choose 
optimal number of network neurons. We can simply add 
more neurons and retrain. If the larger network has the 
same final effectively used number of parameters, then the 
smaller network was large enough. In our case, the final 
network had 3 inputs, 6 neurons in the hidden layer and 
one neuron in the output layer. The weights were adjusted 
using Levenberg- Marquardt algorithm during the training 
procedure. This algorithm has the most rapid convergence 
properties for networks with moderate complexity [14]. 

The network was trained using supervised learning 
with a training set of inputs and targets. This procedure is 
described by: 
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where f(ρ1, ρ2, ρ3) is the discriminant function which have 
to be determined by the ANN to minimize the mapping 
error of the features ρ1, ρ2, ρ3  to the targets, the binary 
values 1 and –1. These binary values represent the subjects 
having audiometric MHL in frequency range 500-4000Hz 
less than 30dB and more than 30dB, respectively. Thus, 
normal hearing subjects are coded by “1” and hearing 
impaired subjects by “-1”. 

The preliminary attempts of the neural network 
training showed that the network generalized well if the 
training set consisted of approximately equal number of 
hearing impaired and normal hearing cases. The training 
set was therefore made of a database representing 385 
hearing impaired and 400 normal hearing subjects. The 
testing set contained all the subjects: 809 hearing impaired 
and 4404 normal hearing.  

In the testing stage, separation of subjects belonging to 
one of the groups is made according to this rule: 

0γ

IH

NH

y
<
≥

=   (5) 

where NH represents the normal hearing subjects, IH the 
impaired hearing subjects, y is the ANN output value and 
γ0 is the threshold value at which we obtained 90% of 
sensitivity. 

 
D. Procedure to evaluate  the subject separation results 

The principles of statistical decision theory [18] were 
used for the comparison of linear and nonlinear classifiers, 
where the linear classifier used the average of the features 
and the nonlinear classifier used the features combined by 
the trained ANN. 
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According to the statistical decision theory the subjects 
that were identified correctly as normal hearing are named 
as True Negatives (TN) and those, that are identified 
correctly as hearing impaired, are named True Positives 
(TP). Some subjects were however identified incorrectly 
and contribute to errors. Subjects that posses normal 
hearing, but were identified by the separation algorithm as 
hearing impaired are called False Negatives (FN) and 
subjects that have impaired hearing but were identified as 
normals are called False Positives (FP). 

The performance parameters for the separation 
algorithms can be defined as: 

• Specificity, the probability to correctly detect the 
normal hearing subject, 

• Sensitivity, the probability to correctly detect 
hearing impaired subjects. 

These probabilities can be varied by choosing different 
decision thresholds in the outputs of the classifiers. 
However, when one of the probabilities is increased, the 
other is decreased. A function of sensitivity as a function 
of the variable 1-specificity, when the decision threshold is 
varied over the range of the classifier output values, is 
called receiver operating characteristics (ROC). In TEOAE 
detection applications it is very important to have high 
sensitivity of the classifier to identify the main part of the 
hearing impaired subjects. The comparison of the 
performance of the different classifiers was therefore made 
by keeping the sensitivity at a fixed level of 90% and 
comparing the resulting specificity. 

Results 
Both, the linear and the nonlinear, classifiers 

transformed a vector of three TEOAE features, 
representing one subject, into one single output. The linear 
classifier output was the mean cross correlation between 
the two subaverages for each scale in the range of 0 to 100 
while the ANN gave the output in the range from -1 to 1. 
The results from both classifiers in separating the NH 
group from HI group are shown in fig. 4 and fig. 5. 

Normal hearing subjects are grouped in the left part of 
the figures (4404 subjects), while hearing impaired are 
grouped in the right part of the figures (809 subjects). The 

decision threshold (dashed horizontal line) for separation 
of hearing impaired from normal hearings is selected such 
that a sensitivity of 90% is obtained. It can be observed 
that most of normal hearing subjects are above the decision 
threshold in the left-hand side of the figures. They 
constitute the true negatives. The normal hearing subjects 
below the decision threshold are the false positives. 
Similarly, hearing impaired subjects (right side of the 
graphs) below the threshold are the true positives and 
above the threshold are the false negatives. It can 
obviously be seen that the linear approach distributes 
subjects more evenly in comparison with ANN, which 
seems to separate most of subjects in two distant regions. 
The improvement expressed as specificity at 90% of 
sensitivity is, however, showing a very small difference 
between the methods, (82.7±0.57) % for the linear versus 
(84.1±0.55) % for the nonlinear (the specificities are 
shown together with one standard deviation). 

It might be assumed that bigger differences would 
appear at other levels of sensitivity. This is, however, is not 
the case, as can be seen in the ROC curves in fig.6. The 
curves indicate that the separation methods are very 
similar, though, nonlinear approach exceeds linear at some 
regions. This means a small advantage of nonlinear method 
to linear at some particular decision threshold values in 
terms of correctly identified subjects. 

 

Fig.5. ROC curves for both methods 

 

Fig.4. Separation of normal hearing and hearing impaired subjects 
using ANN separation 

 
Fig.6. Separation of normal hearing and hearing impaired subjects 

using a linear classifier. Here ρ is the average of the features- 
ρ1, ρ2 and ρ3 
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Although the resulting difference between the two 
methods was small we could prove that the difference is 
statistically significant by applying a hypothesis test with 
the null hypothesis defined, as "no differences among the 
results from the classifiers". After making the assumption 
about normal distribution of the results, the hypothesis test 
showed that we could reject the null hypothesis, as the 
evaluated P value was 0.0002. 

Discussion  
We compared in this study two classifiers to separate 

hearing impaired and normal hearing subjects, using 
TEOAE based features. The first classifier was constituted 
by the linear average of the set of features, while the 
second, based on neural network, which could account for 
a more complex relationship, possibly nonlinear, among 
the set of features as extracted from TEOAE and the mean 
hearing level in the frequency range 0.5-4kHz. We 
expected, based on the facts about nonlinear TEOAE 
generation mechanism in the cochlea, a substantial 
improvement in subject separation using more complex 
nonlinear classifier as compared to a linear. The results 
were, however, very similar with a small but still 
statistically significant advantage of the neural network 
based classifier. 

A possible reason why the neural network did not 
decrease the number of errors more compared to the linear 
classifier might be due to the fact that the database 
includes a certain amount of errors caused by deficient 
measurements of TEOAE or audiograms. The outlyers 
may prevent the neural network to establish the right 
separation function during the training procedure. We have 
manually inspected some cases with erroneous behavior: 
hearing impaired subjects with a TEOAE like response 
(false negatives) and normal hearing subjects with a 
response in which TEOAE can not be detected (false 
positives). There are several reasons that may contribute to 
false positives: a) poor fitting of the probe into the ear 
canal (loose seal to the ear canal reduces stimulus pressure 
and TEOAE amplitudes), b) a blockage of the microphone 
or speaker ports against the ear canal wall or by ear wax, 
which prevents the recording of the TEOAE response, c) 
strong ambient noise during the session of recording, d) 
conductive hearing loss in middle ear of 10 to 20 dB can 
make emission undetectable. One example of a false 
positive case is shown in fig. 7, where the subject has 
MHL=4dB indicating the potential to generate TEAOE and  
where the ρ value equal to 40% indicates mainly the 
random activity. The possible reasons for low ρ value 
might be a) somewhat low stimulus pressure -72dB (scaled 
stimulus is shown in the left-hand side of the figures), 
while the average pressure is 80dB in the database and b) 
strong ambient noise. 

False negatives, may also appear due to technical 
failures: a) bad fitting of the probe into the ear canal may 
cause prolonged stimulus artifact, which will give 
increased cross correlation values, b) noise from 
instrumentation which is synchronized with stimulus may 
be detected as the TEOAE. 

 
Fig.8. An example of prolonged artifact 

Fig.8 shows an example representing a false negative 
case, which might have increased cross correlation value 
due to prolonged stimulus artifact. This subject is classified 
as normal hearing although the MHL is 39dB. 

It is, however, sometimes difficult to find a simple 
explanation for the achieved error. Figure 9 shows a 
TEOAE response from a subject, which is hearing 
impaired according to audiometric data with MHL 53dB. 
This response looks like a response from a completely 
normal hearing subject, where: high, middle and low 
frequencies easily can be distinguished in the response. 
One possible explanation for this example is that it may be 
a retrocochlear hearing loss, which means that the hearing 
loss is caused by dysfunction the auditory pathway after 
the cochlea. Such a condition cannot be detected by a 
TEOAE test, since these cases have a normal cochlea 
producing a normal TEOAE. Another possible explanation 
is error in the measurement of the audiogram. 

 

Fig.7. The example of TEOAE response in case of false positive 
subject 

 

Fig.9. The example of false negative case 
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Conclusions  
The results of this investigation have shown a small 

difference between a method using average of TEOAE 
cross correlation based time-frequency features and a 
method, which could account more complex relationships, 
possibly nonlinear, in association of these TEOAE features 
to the mean hearing level. Although the difference between 
the methods was small, a statistical hypothesis testing 
confirmed this difference to be statistically significant. 
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V. Marozas, A. Lukoševičius, B. Engdahl, O. Svensson, L. Sörnmo 

Otoakustinė emisija ir rūšiavimas yra/nėra naudojant dirbtinį 
neuroninį tinklą 

Reziumė 

Straipsnyje nagrinėjama, ar, nustačius galimą netiesišką 
priklausomybę tarp otoakustinės emisijos signalų koreliacinių 
charakteristikų ir vidutinio klausos slenksčio, įmanoma tiksliau suskirstyti 
subjektus į girdinčius ir neprigirdinčius. Otoakustinės emisijos signalams 
skirstyti buvo panaudoti du klasifikatoriai: tiesinis su vienodais parametrų 
svoriais ir apmokytas dirbtinių neuronų tinklas. Neuronų tinklas 
apmokymo metu galėjo "išmokti" sudėtingesnę negu pirmojo 
klasifikatoriaus diskriminantinę funkciją, tačiau rezultatai parodė, kad 
specifiškumo padidėjimas, esant fiksuotam jautrumui, yra nedidelis, nors 
ir statistiškai patikimas. 
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