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Introduction 

In a wide range of ultrasonic non-destructive testing and 
measurement applications, the wave propagation law in 
acoustic or elastic environment is of primary interest. It is  
necessary for selecting proper  topology of ultrasonic 
transducers, understanding the features of received signals 
influenced by cracks or internal irregularities in the bodies of 
investigation, etc. The above mentioned phenomena are 
described by well-known wave and dynamic elasticity 
differential equations. However, the computational structural 
models obtained on the base of them are still challenging 
because of their huge dimension necessary to represent 
adequately the shape and time law of the wave the length of 
which is much smaller than the spatial dimensions of the 
body.  

In this study we focus our attention on transient 
behaviour of the propagation of the typical ultrasonic pulse 
excited on the boundary of the environment. During the last 
decade a huge effort has been made to create the techniques 
and software able to solve realistic problems of  ultrasonic 
wave propagation. The available publications on the problem 
present several  different approaches.  The finite difference 
schemes able to associate different density and elastic 
parameters with each grid point, to take into account the 
boundaries between different materials and arbitrary 
geometrical shape of the region  are referenced in [1]. The 
approach has been implemented as WAVE2000 
computational ultrasonics software able to solve 2D 
problems in powerful multiprocessor computing 
environments, as well as, in PC’s. The approach is based on 
efficient  algorithms of step-by-step computation of  the 
structural displacements over all the structure and the time 
interval. 17 mesh points per shortest wavelength have been 
used, and the time step ensuring the stability of the explicit 

time-marching scheme has been estimated as 
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l t

xt
v v
∆

∆ ≤
+

 , 

where ,l tv v  -  velocities of the longitudinal and shear elastic 
waves. The stability of the explicit numerical integration 
scheme being ensured, the accuracy requirements are usually 
satisfied as well - with 17 points per wavelength the 
maximum free vibration frequency represented by the 

structural model is usually much higher than the highest 
harmonic component of the wave of interest. The 
combination of finite difference and finite element approach 
has been earlier described in [2].  

The three-dimensional problems seem to be most 
realistic to approach by using  the boundary integral equation 
techniques the transient formulations and implementation of 
which have been mentioned in [3],[4] for acoustic and in [5] 
for elastic waves.  The space and time step requirements are 
similar as mentioned above for the finite difference 
approach, however, only surface of the body has to be 
discretized. Moreover, adaptive meshing can be employed by 
using refined meshing in the vicinity of geometrical 
irregularities. The best results can be expected by combining 
properly the finite element and boundary element 
approaches. The boundary integral method is very efficient  
for presenting the homogeneous regions, however, the 
sources of numerical instabilities, excessive oscillations of 
the solution and the measures to cope with them at present 
are not so clearly understood as for the finite element 
models. On the other hand, the zones containing non-
homogeneous  materials are much easier to represent by 
using finite element models.  

This work aims to analyse and improve the accuracy of 
space and time discretized rectangular finite element models 
for transient acoustic wave propagation. In uniform finite 
element models containing identical rectangular elements the 
solution algorithms are very similar to those used in finite 
difference schemes as no structural matrices are necessary to 
assemble and calculation formulae for each grid point can be 
easily written. On the other hand, it is easy to couple such 
models with regions described by means of free finite 
element meshes, as well as, by boundary element models. It 
has been shown in [6],[7] that dispersion relations of uni-
dimensional finite element models can be significantly 
improved by selecting appropriate form of the mass matrix. 
As a consequence, only 5-7 elements per wavelength instead 
of 17 often suffice to represent satisfactory the wave 
propagation law. As contraindication for using such an 
approach  is a non-diagonal form of the mass matrix 
requiring to use iterative methods for solving the linear 
algebraic equation system at each time step. However in 2D 
and 3D cases more than 3 times increase of the element size 
result in considerable savings in computational time even if  
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iteration at each time step is necessary.  The time step 
ensuring stability of the explicit numerical integration 
schemes is also to the same ratio larger because of the lower 

value of the highest free vibration frequency represented by 
the model. In the case of coarser meshes the accuracy 
requirement and not the algorithmic stability is governing the 
selection of the time step. On the other hand, the explicit 
time integration schemes in the case of non-diagonal mass 
matrix have no computational advantage, and implicit ones 
can be discussed. The  performance of several numerical 
integration schemes is being evaluated  in this study. 

The wave equation and the element size selection 
The acoustic wave propagation in region V bounded by 

boundary S is described by means of the transient scalar 
wave equation [8] 
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and initial conditions  
0 0( ,0) , ( ,0)u u u v= =x x& , (3) 

where ),( tu x  - velocity potential,  x – spatial co-ordinate,  t – 
time, ρ,E – bulk modulus and density of the material, qu , - 
prescribed boundary values of the velocity potential and of 
the component of the velocity normal to the boundary. The 

wave velocity is
ρ
Ec = .  

The equation of a finite element is obtained on the base 
of (2),(3),(4) by using Galerkin weighted residual techniques 
[9] :  
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are the “conductivity” matrix,  mass matrix and excitation 
vector of the element correspondingly , ][N - form function 
matrix of the element. 

The physical meaning of the excitation vector { }eQ is the 
prescribed normal velocity on the boundary eS2  of the 
element. Zero normal velocity corresponding to the value 

0}{ =eQ serves as the “natural” boundary condition.  Matrix 
][ e

CM  is the consistent mass matrix of the element. 
Alternatively, the “lumped” (diagonal) version of the mass 

     
a       b 

 
 c  

Fig.1 Natural frequencies  of hierarchical models of the 
rectangular acoustic region obtained by using lumped(a), 
consistent (b) and combined (c) mass matrices 
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matrix ][ e
LM  can be used  obtained by distributing the  mass 

equally between the nodes of the element. It has been found 
in [6],[7]  that neither of the two matrices is optimum for 
acoustic, as well as, elastic wave propagation problems, and 
the linear combination of them can improve significantly the 
dispersion relations represented by the model. The 
demonstration of this can be seen in Fig.1,a,b,c, where the 

family of curves in each figure represent how the values of 

natural frequencies of the rectangular acoustic region depend 
upon the mesh refinement expressed by number of points N 
per side of the rectangular. The natural frequencies presented 
in Fig. 1a correspond to mass matrix 

][25.0][75.0][ e
L

e
C

e MMM +=  exhibit significantly better 
convergence. As a result, less distortion of the wave shape in 
rough meshes can be expected. 

The investigation of the space and time step size in this 
work has been performed by analysing the ultrasonic pulse 
propagation excited on the boundary  by the input transducer. 
The time law of the velocity perpendicular to the boundary 
and its Fourier expansion components is shown in Fig. 2. 

The width of the spectrum of the pulse in Fig.2b necessary to 
reproduce the time law in Fig.2a has to contain the harmonic 
components up to 2.5ω , where ω - the frequency of the main 
harmonic component of the pulse. By means of numerical 
experiments it has been shown that the dimension of the 

element ∆x has to satisfy the condition 1.2c
x
ω
>

∆
 that 

corresponds to about 7 elements along the wavelength of the 

main harmonic component. It can be shown that in the case 

of the lumped mass matrix the condition 5c
x
ω
>

∆
has to be 

satisfied.  
Fig.3 presents the shape of the wave propagating along 

Oy axis and time laws registered by input and output 
transducers at bottom and top edges of the region 
correspondingly. Integration time encompasses 2.5 passages 
of the wave along the vertical left hand side of the region. 
The wave excited by ultrasonic pulse by  the bottom 
transducer (input) refracts from the top transducer (output) 
and then one more time from the bottom one. The picture 
presents converged solution, the convergence being checked 

a      b 
Fig.2.  Ultrasonic pulse: time law (a) and its harmonic components (b) 

  a      b   
Fig.3 Shape of the wave in terms of the velocity potential propagating in the 
rectangular region  meshed   by 25x25 elements (a);  Time laws of  normal velocity 
values averaged on input and output  transducers (b)
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by comparison with the solutions in meshes of considerably 
higher refinement. Fig.4 presents the wave shapes at the 
moment of refraction from the bottom edge of the domain 
(time moment  t=2a/c ) obtained by using different element 
sizes.  

Time step selection 
Numerous different time integration schemes can be 

applied for the time integration of the structural wave 
equation. In the case of the lumped mass matrix the choice is 

usually restricted to explicit  schemes in order to avoid the 
algebraic matrix equation  solution at each time step. As 
explicit schemes exhibit only conditional stability, the time 
step size is restricted by the numerical stability condition of 
the numerical scheme. Practically  for the ultrasonic pulse 
(Fig.2) propagation analysis the time step size is restricted to 

c
xt
5.1
∆

<∆  . As a rule, such time step value is sufficient for 

ensuring accuracy of the explicit scheme as with 
5
ωcx =∆  we 

have about 90 integration points per period of the main 
harmonic component (it is necessary to notice that the 
highest harmonic component of the pulse taken into account 
is about  2.5ω, see Fig.2b). 

If combined mass matrix is used, the explicit time 
integration schemes have no computational advantage. 
Iteration methods for the algebraic matrix equation solution 
have to be applied in any case, so explicit , as well as, 

implicit  time integration  schemes can be used. With larger 
elements, the time step ensuring the numerical stability of 
explicit methods is larger and usually this value is too large 
to ensure accuracy.  In other words, accuracy, not the 
stability, becomes decisive for the selection of the time step. 

Here we compare the behaviour of several time 
integration schemes during the analysis of  the ultrasonic 
pulse  propagation  and evaluate in each case the maximum 
possible time integration step. The following time integration 
schemes have been considered. 

 
Central Difference Scheme (CDS) [10]: 
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Generalized Newmark’s scheme (GNS)  [11]: 
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where parameters , 0,1, 2,...k k mβ =  are selected in order to 
supply the necessary algorithmic features to the integration 
scheme; 

Fig.4. Shape of the wave along the left hand vertical edge at time moment t=2a/c 
obtained by using different rectangular mesh refinement; mass matrices 
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Harmonic acceleration method(HAM) [12]:  
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where λ  is selected close to the frequency of expected main 
harmonic component of the response; 
 
Modified trapezoidal rule method (MTM) [13]: 
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Fig.5. Shape of the wave along the left hand vertical edge at time moment t=2a/c 
obtained by using different time integration schemes; 

element size 
cx
ω

∆ = ;  time step size 
xt
ω
∆

∆ =  within the 

limits of conditional stability of integration schemes;   
______   -  ‘‘exact’’ solution;     ___.___   -  CDM;   

  _ _ _ _  - GNS ,  0 1 2 3
1 1 1; ; ; 1
4 3 2

β β β β= = = = ; 
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Time-discontinuous Galerkin finite element method 
(TDGFEM) [14]: 
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The algorithm enables to apply adaptive time stepping 
basing on the difference norms { } { } , { } { }t t t t

− − − −− − /U U U U& & & . 
We are eager to select the time integration step as large 

as possible to reduce computational cost and simultaneously 
to ensure accuracy of the numerical integration. Fig.5 
presents the wave shapes at the moment of refraction from 

the bottom edge of the domain (time moment 2at=
c

) 

obtained by means of the above mentioned time integration 
schemes and compared  with the solution obtained with 
considerably smaller time step which we regard as the 
“exact” solution. Simple comparison indicates that the best 
accuracy has been obtained by using third accuracy order 

GNS with parameters 0 1 2 3
1 1 1; ; ; 1
4 3 2

β β β β= = = =  and 

TDGFEM. However, TDGFEM requires considerably more 
arithmetic operations at each time step because of the 
internal iteration loop. It is to be noticed that the selection of 
the time step size here was determined by accuracy 
considerations, the conditional algorithmic stability limit 
being reached at larger values of the time step size. As it can 
be seen from the results presented in Fig.4, larger time steps 
are not reasonable to apply.  

If more refined mesh is being used , e.g., 
2
cx
ω

∆ = , the 

time step size is limited by stability considerations. We 

investigate the situation, when the time step size is beyond 
the algorithmic stability limit of conditionally stable 
schemes. Now unconditionally stable schemes have to be 
applied,  as representatives of which we select HAM and 
second order nconditionally stable GNS with 

0 1 2
1 1; ; 1
2 2

β β β= = = . Fig. 6 represents the results obtained 

by using  the two schemes and conditionally stable 
TDGFEM the stability limit of which has not been yet 
reached by the time step size. The behaviour of the solution 
obtained by using  TDGFEM is obviously the best.  

Conclusion 
During the finite element modelling of the transient 

ultrasonic pulse propagation the main challenge is the 

Fig.6. Shape of the wave along the left hand vertical edge at time moment 
t=2.11a/c obtained by using different time integration schemes; 

element size 
2.12

cx
ω

∆ = ;  time step size 
xt
ω
∆

∆ =  requires 

the unconditional stability of integration schemes; 
______   -  ‘‘exact’’ solution  

 ----*----  - GNS , 0 1 2
1 1; ; 1
2 2

β β β= = = ; 

_ _ _ _ _  -  HAM, λ ω=   ; ----o----  - TDGFEM 
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computational performance of the  model expressed in terms 
of amount of memory and computation time. It is reasonable 
to keep the mesh and time step sizes of the model as large as 
possible ensuring simultaneously the accuracy of 
computation: 
• the accuracy of natural frequencies of the region that 

finally  determine the dispersion relation of the model can 
be significantly improved by using mass matrices in the 
form of linear combination of lumped and consistent 
ones. This enables to keep the element linear  dimension 
up to 3 times larger compared with element sizes 
necessary n the case of lumped mass matrices and 
comprise about 7-8 elements per wavelength of the main 
harmonic component of the typical pulse. The highest 
harmonic component of the pulse has about 2.5 times 
greater frequency. The price for such an improvement is a 
non-diagonal form of the mass matrix, however, 
employing iterative algebraic equation solvers requires 
only   about 7 iterations at each time step;  

• larger elements allow to use greater time steps of time 
integration. In coarser meshes the accuracy and not the 
algorithmic stability requirements predetermine the time 
step size. Among five different time integration 
algorithms under consideration the 3rd order maximum 
accuracy generalized Newmark’s scheme gives the best 
results when integrating the ultrasonic pulse propagation 
equations requiring about 15 time steps per one period of 
the  main harmonic component of the typical pulse. 
Similar accuracy has been obtained by using the time 
discontinuous Galerkin finite element method, however, 
the generalized Newmark’s scheme requires less 
computational time; 

• in the case of more refined meshes the 15 time steps per 
one period of the  main harmonic component of the 
typical pulse requires unconditional stability of the 
numerical integration scheme. The time discontinuous 
Galerkin finite element method gave the best results in 
this case. It is important to have efficient procedure to 
solve the algebraic equations and to perform the 
necessary iteration at each time step having in mind that 
practical problems are too large to perform the 
triangularization  of the matrix.  
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R.Barauskas 

Stačiakampių baigtinių elementų tinklų ultragarso impulsų sklidimui 
modeliuoti erdvės ir laiko žingsniai 

Reziumė 

Darbas skirtas erdvėje ir laike diskretizuotų stačiakampių baigtinių 
elementų modelių akustinių ultragarso impulsų sklidimui modeliuoti 
tikslumo charakteristikoms analizuoti ir pagerinti. Tiriamas tipinio 
ultragarso impulso, sužadinto stačiakampės srities pakraštyje, sklidimas 
erdvėje ir laike. Baigtinių elementų modelio dispersinės kreivės ryškiai 
pagerintos parenkant masių matricos pavidalą, kuris yra tarpinis tarp 
konsistencinio ir sutelktojo. Todėl bangos formai patenkinamai 
aproksimuoti pakanka tik 7-8 elementų pagrindinės impulso harmoninės 
dedamosios bangos ilgyje. Tam tikras tokios formuluotės trūkumas yra 
nediagonalioji masių matrica, kadangi algebrinių lygčių sistemą 
kiekviename laiko žingsnyje tenka spręsti iteraciniais metodais. Tačiau 
dvimačiu ir trimačiu atvejais didesni elementai įgalina nemažai sutaupyti 
tiek skaičiavimo laiko, tiek atminties netgi skaičiuojant iteracijomis 
kiekviename laiko žingsnyje. Esant didesniems elementams, tikslumo, o 
nebe skaitinio stabilumo reikalavimas tampa lemiamas parenkant 
integravimo laike žingsnį - skaičiavimo metodas tampa racionalesnis. 
Nediagonaliosios masių matricos atveju išreikštiniai skaitinio integravimo 
algoritmai nebeturi privalumų skaičiavimo laiko požiūriu. Išanalizuoti 
rezultatai, gauti  taikant keletą skirtingų skaitinio integravimo algoritmų. 
Parodyta, kad kaip kompromisinis skaičiavimų greitumo ir tikslumo 
požiūriu praktiškai taikytinas 3-ios eilės apibendrintasis Njumarko 
algoritmas ir netolydusis laike Galiorkino baigtinių elementų metodas. 
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