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1. Introduction 
In the Quantum Hall regime when the Fermi level is 

situated between two adjacent Landau bands, the electrons 
are localized. This fact is confirmed by numerous DC 
measurements of the resistivity of the high-mobility 2-
dimensional systems in a magnetic field at low 
temperatures (see, for example, [1]). In this case the 
conductivity σxx is of a hopping  kind. However, the nature 
of the localized states is very difficult to determine in this 
experiments. The study of high-frequency conductivity σhf 

proved to be useful  in solving of this problem. If the 
electrons are “free” the high-frequency conductivity σhf 
should be the same as σdc, measured in DC experiment, 
and the difference between σhf

 and σdc , from the other 
hand, points to the carrier localization. 

2. The experimental setup 

The high-frequency conductivity can be obtained from 
the propagation  measurements of a surface acoustic wave 
(SAW). When a SAW propagates along the surface of a 
piezoelectric on which a semiconducting heterostructure 
with 2-dimensional electrons is superimposed (see Fig.1), 
the elastic wave is accompanied with an alternating electric 
field. This field penetrates into the 2-dimensional 
conductivity canal, thus producing currents, Joule losses, 
and the SAW attenuation. Sound velocity changes also. All 
these effects are governed by the high-frequency 
conductivity of the 2-dimensional system, and 
consequently if one observes Shubnikov-de Haas 
oscillations of the 2-dimensional system DC resistance in a 
magnetic field, similar oscillations should manifest 
themselves in the SAW attenuation coefficient Γ and 
velocity change ∆V/V. 

In the present work Γ and ∆V/V have been measured 
in a magnetic field up to 7T in the Si δ-doped 
GaAs/AlGaAs heterostructures with sheet densities 
n=(1.3-2.7)·1011cm-2 and mobilities µ=(1-2)·105cm2/Vs. 

3. Experimental results 

The high-frequency conductivity is generally a 
complex quantity:  σhf=σ1-iσ2. For Γ and ∆V/V in this case 
we have: 
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 where K2 is the electromechanical coupling constant of 
LiNbO3, q and V are wavevector and velocity of SAW, 
respectively, a is the gap between the piezodielectric and 
the heterostructure, d is the depth at which the 2-
dimensional canal is buried, ε1, ε0 and εS are the dielectric 
constants of lithium niobate, vacuum and gallium arsenide 
respectively, b and t are some complicated functions of a, 
k, d, ε1, ε0, εS. 
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Fig 1. The experimental setup 
In Fig. 2 the dependences of Γ/(4.34AK2k) and 

(∆V/V)/(AK2/2) on a magnetic field for a sample with the 
carrier density n=2.7·1011cm-2 and mobility µ=2·105cm2/Vs 
are shown. One can see that these values oscillate with 
magnetic field, and for large filling factors the attenuation 
and velocity change peak do coincide, whereas for little 
filling factors the velocity change maxima coincide with 
the minima of the attenuation. Such a behaviour of these 
values could be explained sufficiently well by the Eq. 1. 

The Eq. 1 provides one with σ1 and σ2 from the 
experimentally measured Γ and ∆V/V. In Fig. 3 the 
dependences of σ1 and σ2 on a magnetic field at T=1.5K 
are shown. 

As one can see, σ2 practically vanishes near half-
integer filling factors, i.e. when the Fermi level lies within 
the Landau band. It follows that the electrons are 
delocalized in this magnetic field region, and the 
conductivity is determined by its real part Re(σhf)=σ1, 
which is very close to the DC conductivity σdc. 
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Fig 2. The experimental dependences of  Γ and ∆V/V on magnetic 

field  H at T = 1.5K  ( f = 30MHz ). 

 
With the further increase of the magnetic field the 

Fermi level leaves the Landau band, a metal-dielectric 
transition takes place, and the electrons become localized 
in the random fluctuation potential of the charged 
impurities.  
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Fig 3. The dependences of  σ1 and  σ2 on H  at  T = 1.5K (f=30MHz ) 

 
As the Fermi level departs from the Landau band 

center, σ1 becomes substantially larger than σdc . Such a 
behavior can be qualitatively interpreted [2] as absorption 
by large clusters (“lakes”) disconnected from each other. 
Inside each cluster the absorption is determined by the 
value of σdc. Since the area occupied by the clusters is less 
than that occupied by the infinite cluster at the mobility 
edge, the effective σ1(ω) is less than σdc  at half-integer ν . 
At the same time σ1(ω)  exceeds σdc  at the given magnetic 
field because there is no infinite conducting cluster  at the 
Fermi level . The imaginary part, σ2(ω) increases as the 
Fermi level departs from the Landau level’s center. 

In the magnetic fields corresponding to small integer 
filling factors the Fermi level is in the middle position 
between the Landau bands. One can see in Fig.4 that in 
this case σ2 is far from being equal to zero, but to the 
contrary, is nearly an order of magnitude higher than σ1.  
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Fig 4. Magnetic field dependences of σ1 and σ2 near the filling factor 

ν=2 at T=1.5-4.2K, f=ω/2π=30MHz for the sample with 
n=2.7·1011cm-2 

4. Discussion 

Fig. 5 depicts the σ1(T) dependences (f = 30MHz) at 
the magnetic corresponding to the mid-points of Hall 
plateau fields. One can see a crossover from a smooth 
temperature dependence in a strong magnetic field (5.5T) 
to a rather steep increase with temperature in weaker 
fields. Such behavior is compatible with the idea that there 
are two contributions to the conductivity. The first is due 
to the extended states near the adjacent upper Landau 
level, while the second one is caused by the localized 
states at the Fermi level. 

As the temperature grows, more and more 2D 
electrons appear at upper Landau level, due to their 
activation from the bound states at Fermi level. This leads 
to the growth of the weight of σT in the total conductivity. 
Obviously, this effect is the more pronounced at small 
magnetic fields.  

We now turn to the region of low temperatures and the 
filling factors close to 2, where hopping between the 
localized states gives the main contribution to dielectric 
response. To analyze the experimental results  we adopt 
the co-called two-site approximation, according to which 
an electron hops between states with close energies 
localized at two different impurity centers. These states 
form pair complexes which do not overlap. Therefore they 
do not contribute to the static conductivity but are 
important for the AC response. In the following we will 
use the 2D-version of the theory [3]. Some details of the 
discussion depend on the assumptions regarding both the 
density of localized states and the ralaxation mechanisms 
of their population. 
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Fig. 5. The experimental dependence of σ1 on temperature at 
magnetic fields corresponding to integer filling factors 
(f=30MHz) 

As is well known, there are two specific contributions 
to the high-frequency absorption. The first contribution, 
the so-called resonant, is due to direct absorption of 
microwave quanta accompanied by inter-level transitions. 
The second one, relaxational, or phonon-assisted, is due to 
phonon-assisted transitions which lead to a lag of the 
levels population  with respect to the microwave-induced 
variation in the inter-level spacing. The relative 
importance of the two mechanisms depends on the 
frequency ω, the temperature T, as well on the sample 
parameters. The most important of them is the relaxation 
rate γ0 (T) of symmetric pairs with inter-level spacing  
E=kT. At ω≤ (kTγ0/h)1/2 the relaxation contribution to 
σ1(ω) dominates, and only this one will be taken into 
account.  

Following [4] we obtain  
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where ξ is the localization length, rω is the distance 
between localized states within one pair, e is the electron 
charge and g is the density of states on the Fermi level, kB 
is the Boltzman constant and  J0 ≈ Bohr energy. 

For σ1 given, one could with the aid of Eq.2 obtain the 
absolute value of the localization length of the 2D 
electrons. To do this one needs the one-electron density of 
states g in the magnetic field, corresponding to the case of 
the Fermi level in the middle position between two 
adjacent Landau levels. In the works of von Klitzing [5] 
and Kukushkin [6] (from temperature dependence 
measurements of conductivity in the activation regime) 
and in Pudalov's work [7] ( from the capacity studies) it 
has been shown that for small even filling factors the 
density of states in the magnetic field region corresponding 
to the Hall's plateau is finite and does not depend on a 
magnetic field. 

Using the density of states versus mobility curve from 
[1] obtained for a sample similar to ours, we estimate the 
density of states as g=2.5·1024 cm-2·erg-1. On the other 
hand, according to [3], the density of states as a function of 
magnetic field H can be expressed by the interpolation 
formula 

( )
H

g
Hg

µ+
=

1
0   (3) 

where µ is the mobility of the 2D-electrons while 
g0=2m/(πh2) is the 2D density of states at H=0. From (3) 
we obtain for H=5.5T the density of states g=1.7 1024cm-
2·erg-1. 

Using the first estimate for the density of states 
one obtains ξ=6.5·10-6 cm, that is about 1.6 times greater 
than the spacer thickness, lsp=4·10-6 cm. On the other hand, 
it is the spacer width, which characterizes the random 
potential correlation length in the 2DEG layer. Hence, this 
fact contradicts to our interpretation of experimental 
results as in terms of pure nearest-neighbor pair hopping. 

To solve the controversy, we assume that the 
high-frequency hopping conductivity of the 2DEG channel 
is shunted by the hopping along the doping  Si δ-layer. 

This assumption can be substantiated as follows. 
Let us suppose that in the middle of the Hall plateau 
σ1

ν=2=4·10-7 Ohm-1 and σ2
ν=2=2.4·10-6 Ohm-1 is entirely 

determined by the hopping conductivity along  the Si δ-
layer. Such a contribution is only weakly dependent on 
magnetic field because the latter is too weak to deform 
substantially the wave functions of Si-dopants. Then the 
contributions to σi associated with the 2DEG channel is 
just a difference between the experimentally measured σi 
in a given magnetic field  and their values at ν=2. 

Let us analyze dependences of the differences F1 ≡ σ1 
- σ1

ν=2 and F2 ≡ σ2 - σ2
ν=2 on the filling factor ν. The plots 

lg Fi versus ν are shown in Fig.6. Both curves tend to 
straight lines, and in this way they can be extrapolated to 
ν=2.Using the extrapolation we have obtained F1

{ν =2}=10-8 

Ohm-1 and F2
(ν =2)=5·10-8 Ohm-1. It should be noticed here 

that the extrapolated values of Fi
ν =2 are two order of 

magnitude smaller than the quantities of σi
ν=2, associated 

with the hopping along Si-δ-layer. 
Using the extrapolated values of F1 and F2 to extract 

the 2DEG contributions to σ1 and σ2, one can calculate the 
electron localization length at ν= 2 from Eq.2.  
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Fig. 6. The dependences of  lgF1=lg (σ1 -σ1

ν =2) and lgF1=lg (σ1 -σ1
ν =2) 

versus the filling factor ν near ν=2. T=1.5K, f=30MHz 

This procedure is corroborated by the fact  that the 
experimental ratio F2/F1= 5 is close to the theoretical value 
4.2 coming from Eq.2. The localization length at ν=2 
obtained in this way is ξ=2 ·10-6 cm, which is  half of the 
spacer width. This estimate makes realistic the "two-site 
model" which we have extensively used. It should be 
emphasized, however, that from the above value of ξ the 
hopping length rω is estimated to be 1.4·10-5 cm. 
Consequently, there is an interplay between hops to the 
nearest and more remote neighbors. A more rigorous 
theory for this situation should be worked out. Such a 
theory should also explain why the magnetic field 
dependences of σ1 and σ2  at the vicinity of ν=2 appear to 
be different - the σ1(H)-dependence is more pronounced 
than the σ2(H)-one. According to the two-site model, both 
are determined by the respective dependence of the 
localization length on the magnetic field and should be 
similar. Indeed, their ratio, from Eq.2, is almost field-
independent. It follows from the experimental data that 
there exists an additional mechanism leading to the 
pronounced decrease of  σ2 as the Fermi level falls into the 
extended  states region. A probable mechanism is thermal 
activation of electrons from the Fermi level to the upper 
Landau band, leading, firstly, to a decrease of the number  
of pairs responsible for the hopping conductivity, and, 
secondly to a screening of the electric field amplitude 
produced by the SAW. We hope to work out a proper 
quantitative theory in future. 

Conclusions 
By means of acoustic methods it has been shown that 

in the Si δ-doped GaAs/AlGaAs heterostructures with the 

carrier densities n=(1.3-2.8)·1011cm-2   and  mobilities 
µ=(1-2)·105cm2/Vs at T=1.5K in the IQHE-regime the 2D 
hopping conductivity takes place. Real and imaginary parts 
of this conductivity and their ratio as well as temperature 
and magnetic field dependencies have been obtained.  

It has been shown that in magnetic fields at ν=2, 4 hf 
hopping conductivity in Si δ-layer shunts hopping 
conductivity in a 2D channel. The method of derivation of 
hf hopping conductivity in a 2D channel is suggested in 
this case. The localization length value for electrons in 2D 
channel is calculated. 

The dependences ξ(Η) in the vicinity of ν=2 and  4 are 
similar to those obtained in the Furlan's work [1] using 
conventional DC method. One should notice that this 
acoustical method allows one to obtain the localization 
length value in magnetic fields corresponding to the 
quantum Hall’s plateau centers  which is impossible in DC 
technique.  
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Aukšto dažnio kintančio laidumo kvantiniu Hallo režimu akustiniai 
tyrimai 

Straipsnyje akustiniais metodais parodyta, kad siliciu legiruotose 
GaAs/AlGaAs heterostruktūrose atsiranda 2D kintantis laidumas. 
Nustatyta, kad aukšto dažnio laidumą galima rasti atliekant paviršinių 
akustinių bangų greičio pokyčio matavimus. 
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