ISSN 1392-2114 ULTRAGARSAS, Nr. 3(36). 2000.

Mathematical modelling of steering mechanism link vibration process in a low

power tractor
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Vibration of a steering mechanism link in a low power
agricultural wheel-tractor and its possible mathematical
modelling are analysed in the article. The developed
mathematical model of the mechanical system vibration
can be used to calculate longitudinal and transversal
vibrations, frequency functions of vibration amplitude and
to analyse the influence of construction elements on this
process.

Introduction

Engine, transmission, chassis and implements of the
aggregated agricultural machinery are the main sources of
vibration in mobile agricultural machines [6, 7]. High
vibration levels influence the person, who works on
agricultural tractor, through driving control and steering
mechanism [6]. When a person driving a tractor
accumulates vibrations, feels discomfort, his working-
capacity decreases. Information about vibroacoustic
properties of tractor steering mechanism links is always
helpful to decrease the vibration generated by driving
control and steering mechanism elements. Some of the
vibroacoustic properties can be used in practical solving of
vibration related problems. Mathematical model of
vibration phenomenon in the steering mechanism link is
developed with the purpose to determine the vibroacoustic
properties. The results of this mathematical model enables
efficiently reduce vibrations in mobile agricultural
machines.

The objective of this investigation was development
the mathematical model of steering mechanism and its
links, i. e., description of vibrations of longitudinal and
transversal direction by differential equations.

Theoretical analysis

For calculation of the displacement
G(X, Y, z,t) =ui +Vvj +wk of the
mechanism links — steering column the dynamic Lame’s
equations are used [1, 2, 3]:
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The system of the Lame’s partial differential equations
is solved by approximate methods, using corresponding
initial and boundary conditions. This is a complicated way,
which is difficult to apply for practical processes[7].

As a mechanical system steering column is a thin -
walled cylinder (pipe) of R radius and thickness h which is
fixed like a holder beam [6]. Then symmetric dynamic
problem of the elastic theory can be solved with respect to
the steering device axis 0z. Then movements u(r, z)=u(R,z)
(where R — radius of the cylinder transversal section wall
inside the circle). The main stresses in the deformation
process are o; and oy, while o; and 7, are small, i. e. ;=0
and 7,.#0. The Hooke’s law in a cylindric coordinate
system can be expressed in the following way:
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Fig. 1. Scheme of cylinder walls deformation
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The dynamic equilibrium equations are written in the
cylindrical system of axes (Fig.2).
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Fig. 2. Deformation of steering column element dV

All forces, influencing the element dV=rd@drdz, are
projected to the axes 0z and Or. The following equations
are obtained:
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The following dynamic differential equations of
steering column element equilibrium are obtained:
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Having put Eq.3 of stresses into the equations of
dynamic equilibrium (6), the system of two differential
equations of partial derivatives is obtained to for
calculation of the movements U and w:
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The first equation of this system is integrated with
respect to Z in the interval [0;z]. The following equality is
obtained:
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The following expression may be obtained from the
second equation of Eq.7:
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Longitudinal vibrations are calculated using the

formula w= (r - R)Z—u Eq.10 is solved if the beginning of
z

steering column is fixed rigidly and the end — freely. Then

the following boundary and initial conditions are given by:
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According to [2], the curved pivot or pipe, which
fulfils the boundary conditions at the initial time instant
t=0, according to resilience theory has the following
equation for transversal bend:

Ug(2) = (1-coskz)- f (12)
The solution of Eq.10 is given by:
u(z,t)=ug(2)T(t), T(0)=1 and T'(0)=T,;. (13)
As u6(z)z=l =0, then coskl=0, k =”(2+|+1), and
ug(z)=f -[l—coswz} (neN).
Substituting Eq.13 into Eq.10 we shall obtain:
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The approximate Bubnov — Galiorkin method is used
to find the function T(t). For this purpose terms of Eq.14
are multiplied by Uy(z) and the obtained equality is

integrated in the region z € [0; I], that is

44

ISSN 1392-2114 ULTRAGARSAS, Nr. 3(36). 2000.
|
T ”

2
[l - cosM z] dz
0 21

Az (2n+1)?
41

' z(2n+1) z(2n+1)
chos—z l-cos————=7 |dz
21 21

0
(15)
Having integrated these integrals the following
differential equation is obtained for calculation of the
function T(t):

T"+B2T =0,
where
n
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The general solution of Eq.16 given by:
T(t) =C;cos Bt +C,sin Byt
As T(0)=1, then C;=1. Having used other initial
condition T'(0) =T, the following is obtained:
T'(t)=—-C,By, sin Byt +C, By, cos Byt,

Can =T1 and C2 Zl.
Bn
T
Then T(t)=cos Byt + B—sm Bnt.
n

Then, the solution of Eq.10 is written in the following
way:

Un (2,0 =Uo (DT (V) =

17
f- l—cosmz Tocoant+T—lsiant 17
21 B

where f is the maximum bend of the column at the free end
(£=((0,01-0,05)*1)).

The transversal bends are added up to get the general
solution for transversal vibrations:
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The longitudinal vibrations of the steering column are
calculated from the formula:
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However, in real construction steering wheel the mass
M is fixed by the pivot of |, length to the cylinder body of
the mechanical system, described above, look Fig. 3.
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Fig. 3.Mechanical scheme corresponding with the scheme of steering
links — column, shaft and steering wheel connector

According to Eq.3 of steering shaft transversal
vibrations the boundary conditions are the following:
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where a; = — , Mo is the mass of the shaft length unit;

r
m, is the reduced mass:
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M is the steering wheel mass; ry is the radius of the mass.
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Solution of Eq.12 can be found as:

u(zt)=f -[1—sin@(z—l)¢(t)}, (26)
2
As uy(1,0)=f -T(0)= f , then, T(0)=1.
Eq.26 is substituted into Eq.25. As
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To find the function T(t) the Bubnov — Galiorkin
method is used within the interval [l; 1+1,] for the Eq.27.
For this purpose the Eq.27 is multiplied by Eq.26 u;(z,t)
and the obtained is integrated. Then
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Having integrated the Eq.28 to calculate the function
T(t) the following differential equation for calculation of
the function T(t) is obtained:

T"+b2T =0,

where
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The solution of the Eq.29 is T (t)=cosbyt + d,, sinb,t ,
as T(0)=1. Then the following transversal bends of
steering shaft is given by:

u(zt)=f .[l—sin@(z_wj.

2 (30)

-(cosbpt+d,, sinbyt)
These transversal movements of the steering shaft,
described by Eq.30 at the initial time instant t=0 match the

transversal bend of the steering column u(z, t) at the point
z=1, where u(z, t) is given by the Eq.17:

u(z,t)y=f -(l—cos@ Zj(cos Bt + Dy, sin Bt).

Then, transversal vibrations of the steering column and
the steering shaft u(z, t) are written in the following way:
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where B, are the steering column vibration frequencies, b,
are the steering shaft vibration frequencies.

The solution, made by partial derivatives of
differential equations, are modelled by means of
computers. The Fourier transform of the Eq.30 is

performed by the specialised programming packages
“MathCAD 2000” and “MATLAB 5.2”. These programs
have been used to calculate frequency response of the
steering system links amplitude of the low power tractor of
T-25A modification. The results reflect the real
vibroacustic characteristics of the tractor T-25A steering
column, which have been obtained by the mechanical
impedance method [4, 5, 6].

Results of modelling
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Fig. 4. Modelling results. Column body length 1=0,8 m, E=2%10"'N/m?,
o=7800 kg/m3 , #=0,29, the wheel mass m=2,5 kg.
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Fig. 5. Modelling results. Length of the protruded part of the shaft
1,=0,1 m, E=2*10"" N/m?, p=7800 kg/m’, £=0,29, the wheel mass
m=2,5 kg.
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Conclusions

1. Differential equations of tractor steering mechanism
links vibration have been obtained and the ways of their
solution have been presented.

2. Equations of the movement of the steering
mechanism elements and the results obtained are useful in
the investigation of vibration processes and determining
the influence of construction elements.

3. Frequency response of tractor steering mechanism
links body and shaft have been presented.
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Mazos galios traktoriaus vairavimo mechanizmo grandies virpéjimo
proceso matematinis modeliavimas

Reziumé

Straipsnyje nagrinéjami ratiniy z. 4. traktoriy vairo mechanizmo
grandziy virpesiai, ju matematinio modeliavimo galimybés.

Sudarytas matematinis modelis gali biti naudojamas praktiniams
tikslams, modeliuojant vairo mechanizmo grandziy amplitudés dazninés
charakteristikos priklausomybg nuo konstrukciniy parametry.
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