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Introduction 

The problem of the existence of the surface acoustic 
waves (SAW) in anisotropic solids has unsettled many 
experienced scientists for years and caused them to publish 
many papers on the subject. Some of them tried to answer 
the question whether SAW can propagate on an arbitrary 
cut of any anisotropic solid in any direction or there exists 
exceptions employing the surface impedance tensor first 
introduced by Ingebrigtsen and Tonning in 1969 [1-4]. In 
some others an effort has been made to employ the theory 
of uniformly moving dislocations [5, 6]. In this paper, we 
shall give a short review of the SAW existence 
considerations based upon the notion of the surface 
impedance tensor as more applicable and shall try to reveal 
the current state of what is known in this field. 

Acoustic waves in anisotropic solids 
We shall start with the equation of motion for particles 

of homogeneous media:  
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where x is the position vector, t is the time, u is the particle 
displacement from its equilibrium, ρ is the material 
density, and cijkl is the elastic stiffness tensor, which is 
always positive definite [1]. Positive definiteness of the 
stiffness tensor expresses the fact that any displacement of 
body particles from their equilibrium results in increasing 
the potential energy of the body. The Einstein convention 
on the summation over repeated indices (both Latin and 
Greek) is accepted here and further, unless explicitly 
indicated otherwise. 

Now let us consider an orthogonal pair of real unit 
vectors m and n. Stroh in 1962 has shown that for any 
function f with continuous derivative it is possible to find 
out such a vector A and a scalar p that the displacement 
field described by it satisfies the equation of motion (1) 
[1]. Without loss of generality, we may assume that the 
function is an exponent, and the displacement field is 
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where v is a parameter with the dimension of velocity, p is 
a dimensionless parameter, and ω is the frequency. 

Substitution of Eq.2 into Eq.1 yields a set of linear 
algebraic equations with respect to Ak: 
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where δjk is a Kronecker’s delta symbol. As it is known, a 
homogeneous set of linear algebraic equations has a 

nontrivial solution if the determinant of the matrix made up 
by the equation coefficients is zero, i.e., 
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Assuming p=0, we obtain a third power equation with 
respect to v2. This equation always has three positive roots. 
Substituting them into Eq.2, we obtain three particle 
displacement eigenvectors A. The vectors so far are real, as 
the equation coefficients are real. Those vectors are the 
amplitudes of the three bulk waves, so far arbitrarily 
normalized, which displacement is uniform on any plane, 
perpendicular to m, which is the direction of propagation 
of an acoustic wave. Generally, the direction of the bulk 
wave amplitudes A neither coincides with m nor is 
perpendicular to it. The propagation directions in which 
two of the bulk wave amplitudes are perpendicular, and the 
third which is parallel to m, are called the pure mode 
directions [9] (however, sometimes the term is used for 
directions in which the wavefront normal m coincides with 
the energy flow direction). The first two waves are 
transversal, the third one is longitudinal. Generally, the 
bulk waves in anisotropic solids are quasitransversal and 
quasilongitudinal. As their amplitudes are real, they are 
always linearly polarized. Moreover, due to the 
symmetricity of the tensor Xjk=cijklmiml, the polarizations of 
the three bulk waves are mutually orthogonal. 

The three values of v obtained are the phase velocities 
of the quasitransversal and quasilongitudinal acoustic 
waves. Taking every propagation direction m and 
computing the three velocities at each direction, we would 
obtain the three surfaces of the bulk wave velocities. In 
isotropic media every surface is a sphere. The two spheres 
of transversal wave velocities coincide, the sphere of 
longitudinal wave velocities is outside the spheres 
pertaining to transversal waves. Every direction in an 
isotropic solid is a pure mode direction. The situation is 
more sophisticated in anisotropic solids: generally, the 
surfaces are of different shapes. The directions in which 
some of the velocities coincide are called acoustic axes. 
Acoustic axes may or may not be associated with elements 
of symmetry; even triclinic crystals have acoustic axes. In 
the most cases quasilongitudinal waves are faster than 
quasitransversal ones. Eq.3 is invariant of the sign of the 
velocity. This implies that every surface of bulk wave 
velocities is centrosymmetric. 

Even more interesting are the slowness surfaces (Fig. 
1). Slowness is defined as a magnitude, inverse to velocity: 
c=1/v. One of the most important properties of a slowness 
surface is that the direction of its surface normal at any 
point coincides with the energy flow direction of the wave 
propagating from the beginning of the reference frame to 
the point selected. 
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Transonic states and limiting waves 
Consider a section of a slowness surface in the plane 

m, n. Let’s choose a certain value of velocity v and put a 
point at the distance C=1/v from the centre of the reference 
frame on the axis of the propagation direction m and draw 
a vertical line of constant slowness in the direction of m 
(Fig. 2). Each point of the line corresponds to a 
hypothetical bulk wave propagating at the angle α to m 
with the slowness Cα =C/cos(α), or velocity vα=vcos(α). 
On the other hand, the wave can be described in the 
reference frame m, n as u=Aexp(i(ω/v)(mx+pnx-vt)), 
where p=tg(α). Thus, the point of intersection between a 
wavefront and a line colinear with m travels along this 
direction with the velocity v, larger than the actual phase 
velocity vα by 1/cos(α). Now the physical sense of the 
vertical line of constant slowness in the direction m is 
clear: a wavefront of any bulk wave propagating at the 
angle α to m with the slowness Cα=C/cos(α) travels along 
m with the same slowness c. In the space of velocity the 

vertical line of constant slowness in the direction m is 
transformed into a circle with the radius R=v/2=1/(2C), 
centered at the midpoint between 0 and v. 

Now let’s consider a problem inverse to searching for 
the velocities of bulk waves: let’s choose a value of v and 
solve Eq.4 with respect to p. As Eq.4 is a sixth-order 
(sextic) algebraic equation with respect to p, it has six 
roots. Complex roots come in complex-conjugate pairs, 
because equation coefficients are real. Some of the roots 
may coincide. Let’s draw a vertical line of constant 
slowness. If the velocity chosen is so small that the whole 
line is outside the outermost slowness surface, there is no 
such  real p that the wave of the form (2) with the chosen v 
could propagate. Or, in other words, wavefronts of all the  
bulk waves that could propagate in the plane m, n travel 
along m with a higher velocity than the chosen v. All the 
six roots of the sextic are complex conjugate pairs. Such a 
state and the velocity are called subsonic. The energy 
transfer direction for a subsonic wave is always 
perpendicular to n. This can be merely deduced  from the 
energy conservation law, taking into account that Eq.1, as 
an equation of motion, based upon the principles of 
Newtonian mechanics, consistent with the energy 
conservation law, can only have solutions satisfying it.  

A state described by a line which is tangent to one or 
more slowness curves at one or more points is called a 
transonic state. Generally, there can be three transonic 
states, as there are three slowness curves, however, some 
of them may coincide. The notion of a transonic state is 
crucial to understanding the problem of surface wave 
existence. However, only the first transonic state with 
corresponding velocity vL, called the limiting velocity, is of 
great importance. Therefore, when speaking of a transonic 
state, if not specified explicitly otherwise, we shall mean 
the first one. According to at how many points the line 
touches one or more slowness surfaces, transonic states are 
classified into six types (Fig. 3). Obviously, if a transonic 
state is of type 3, 5, or 6, it is the single possible transonic 
state for a given orientation, because all the three slowness 
surfaces are touched at once. Transonic states depend not 
only on the material properties, but also on the directions 
of m and n chosen. 

When the velocity reaches its limiting value vL, one or  
more pairs of  complex conjugate roots coalesce into one 
or more pairs of equal real roots. A bulk wave described by 
such a real root is called a limiting wave [3]. As seen from 
the graphs, a type 1 transonic state has only one limiting 
wave, type 2 and 4 transonic states have two limiting 
waves, type 3, 5, and 6 transonic states have three limiting 
waves. 

Finally, if the slowness line intersects with one or 
more slowness surfaces, such a state as well as the velocity 
are called supersonic. 

By the way, examining of Eq.4 reveals that the 
slowness curves, that may be obtained by solving the 
equation with respect to v, cannot take any shape. The 
variety of possible shapes is restricted by the requirement 
that the three slowness surfaces altogether should have no 
more than six points of coincidence with any straight line. 
In the case of degeneracy, when two or three slowness 
surfaces coincide  
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Fig. 2. The slowness curves and a line of constant slowness in the m 

direction 
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Fig. 1. The section of the bulk wave slowness for GaAs by the plane 
(0,0,1). VT1 and VT2 are the velocities of quasitransversal 
waves, VL is the velocity of the quasilongitudinal wave 



ISSN 1392-2114 ULTRAGARSAS, Nr.4(37). 2000. 

 31

 

at some single point, a solution of the form Eq.2 is no more 
the general solution of Eq.1. To obtain the general 
solution, one must include a solution of the form 
A(B,x)exp(i(ω/v)(mx+pnx-vt)) or with (B,x) in a higher 
degree, where B is a vector to be found. However, even 
having substituted this form into Eq.1, one couldn’t obtain 
an equation of a higher degree than 6 with respect to p. 
Thus, in the contrary to what is stated in [4, 8], a slowness 
surface cannot take a shape of zero curvature, as in this 
case it would be possible to draw a line having an infinite 
number of points of coincidence with the flat region of the 
surface. This would mean that it is possible to find such a 
velocity v and such directions for m and n that the sextic 
Eq.4 has an infinite number of roots p. The slowness 
surface shown in Fig. 4.3 of [4] has only a seemingly flat 
region. Having calculated the slowness with double 
precision, one may see that it isn’t flat. 

Exceptional limiting waves 

Let us consider a reference frame in which x1 
coincides with m and x2 coincides with n. In this reference 
frame m=(1,0,0) and n=(0,1,0). The traction on a plane 
perpendicular to n is  
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If a limiting wave evokes no traction on planes 
perpendicular to n=x2, it is called an exceptional limiting 
wave. Otherwise the limiting wave is culled normal. 
Similarly, if all limiting waves of a transonic state are 
exceptional, the transonic state is called exceptional [1]. If 
at least one limiting wave is normal, the transonic state is 
normal. Naturally, an exceptional limiting wave, as 
satisfying the free surface condition T2j=0, can propagate 
in a half space with a boundary, perpendicular to n=x2. It is 
why exceptional bulk waves are called improper or bulk 
acoustic waves. Yet there is another term - surface 
skimming bulk wave (SSBW). As shown in [1], the 
polarization of an exceptional limiting wave is always 
perpendicular to n=x2. As indicate many of the published 
works, the first transonic state can be exceptional only if it 
is of type 1 (subsequent transonic states of some other 
types may also be exceptional; however, our interest 
regards only the first transonic state).  

Generally, if a bulk wave of the geometry m, n with a 
certain p produces no traction on planes, perpendicular to 
n, it is called exceptional bulk wave with respect to n. 
Thus exceptional limiting waves is a subset of a broader 
class of exceptional bulk waves [3]. 
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Fig. 3. The six types of transonic states. 
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Ingebrigtsen and Tonnings’s formalism and the 
surface impedance tensor 

Here we shall present an explicit derivation of the 
surface impedance tensor introduced by Ingebrigtsen and 
Tonning in 1969 [9]. Let as consider a subsonic velocity v. 
Having solved the sextic, we acquire six values of p. Now 
we are able to choose three values out of  the six in 20 
ways. However, Ingebrigtsen and Tonning proposed to 
choose the three values with positive imaginary parts, 
describing three waves of a particle displacement decaying 
with increasing x2. As the three eigenvectors of the particle 
displacement A1, A2, and A3, normalization of which is 
arbitrary, are linearly independent at vL and below it [2], 
any other displacement vector X with real or complex 
components may be expressed as a linear combination of 
those three with coefficients ξi: X=ξαAα. Treating the triad 
of ξα as a column vector, and the displacement 
eigenvectors as a matrix Aiα, a column of which describes 
the three components of an eigenvector Aα, the latter 
expression may be written as Xi=Aiα,ξα, of or in the matrix 
form, X=Aξ. Having denoted the stress induced by the 
eigenvector Aα on a plane, perpendicular to x2, as ν0α, we 
may express the stress induced by the displacement vector 
ξ as ν = ν0αξα. Introducing the matrix ν0, element ν0iα of 
which describes the traction, induced by the displacement 
eigenvector Aα in the direction xi, we express the traction 
as νi = ξαν0iα, or ν = ν0ξ. On the other hand, from the 
expression for X it follows that ξ=A-1X. Finally, we are in 
a position to give an expression for the traction in the most 
convenient form: 

 XZν 1= ,  (6) 
where 

 1−= AνZ 01     (7) 
is an Hermitian matrix called the surface impedance tensor. 
Ingebrigtsen and Tonning, intending to stress the fact that 
the surface impedance tensor isn’t defined unambiguously, 
and the one given in the above expression is only one 
possibility out of 20, denoted it by Z1 instead of  Z. 

The Eq.6 provides a fundamental relation between 
particle displacement and stress. The relation depends on 
material properties, the velocity, and choice of the unit 
vectors m and n (x1 and x2), but it is independent of the 
coordinate in the reference frame chosen. The magnitude 
introduced will be of great importance later, when treating 
transonic states and addressing directly the problem of 
existence of the surface acoustic waves. 

Subsonic surface acoustic waves and their 
existence 

Let’s choose a subsonic velocity v and consider three 
solutions of Eq.3 with positive imaginary part of p. The 
reference frame is as previously: m=(1,0,0) and n=(0,1,0). 
The only difference is that now our body is a half-space 
having a boundary, perpendicular to n, situated at x2=0 
(Fig. 4). The amplitudes of the waves described by the 
solutions vanish when getting deeper into the body. The 
three solutions of different amplitudes Aα and eigenvalues 
pα can be combined into a linear combination with 
weighting coefficients Eα: 
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The traction induced by the waves on the surface is 
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As seen from the above formula, the plane x2=0 is left 
free of traction if 

            1...3. ,0)( 2212 ==+ jpccAE jkkjk ααα  (10) 

This expression is a set of three algebraic equations 
with respect to Eα, having a nontrivial solution if the 
appropriate determinant is zero. Therefore, if it is possible 
to find such a speed vR< vL at which the determinant of the 
matrix Cjα=Aαk(c2jk1+c2jk2pα) (no summation on α and j) 
vanishes, the SAW may propagate at this subsonic 
Rayleigh speed. The problem may equivalently be treated 
employing the surface impedance tensor of Ingebrigtsen 
and Tonning, introduced by us earlier. If, for a given 
orientation and given velocity, there exists a particle 
displacement vector X, such that 

 ,0=XZ1  (11) 
it means that a wave evoking such a displacement on a 
plane, perpendicular to n (x2), induces no traction on it. 
Therefore, such a wave could propagate in a semiinfinite 
crystal with a boundary, perpendicular to n (x2). Thus the 
problem of finding the surface wave velocity may be 
considered as the problem of finding the velocity at which 
det(Z1)=0.  

For years it had been an open issue if for any given 
orientation of a solid of arbitrary anisotropy a solution of a 
subsonic Rayleigh wave may be found. When considering 
the problem in 1956, the Irish mathematical physicist 
J.L.Synge noticed the following: as the determinant is 
generally a complex magnitude, its real and imaginary 
parts are unlikely to vanish at the same velocity 
simultaneously [3]. Therefore, orientations with no 
subsonic Rayleigh wave should be expected rather as a rule 
than an exception. Nevertheless, attempts to find such a 
forbidden direction failed at that time. Stroh in 1962 
showed that the determinant to be considered could be 
replaced by the determinant of some symmetric purely real 
matrix. Thus, Synge’s analysis was not as restrictive as 
originally believed. Unfortunately, Stroh’s untimely death 
stopped his effort in this field. A formalism of the surface 
impedance tensor by Ingebrigtsen and Tonning, who were 

n = x2

x3

m = x1

 
Fig. 4. The geometry of the reference frame in a semiinfinite solid 

with the boundary, perpendicular to n. 
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unaware of Stroh’s work, was strikingly similar to that of 
Stroh [3].  

Barnett with coauthors in 1973 showed that whenewer 
a subsonic Rayleigh wave exists, it is unique (there exists 
no more than one value of velocity vR<vL at which the free 
boundary condition may be satisfied). Barnett and Lothe in 
1974 [6] revealed that in the case of nonexistence of 
subsonic Rayleigh waves always an exceptional limiting 
wave (in other words, a surface-skimming bulk wave, 
SSBW) exists. The statement of existence made by 
Chadwick and Smith in 1977 was detailed by Barnett and 
Lothe in 1985 [1], using the surface impedance tensor Z of 
Ingebrigtsen and Tonning. Their existence theorem can be 
stated in its general form [3]: 

“For a given surface wave geometry m, n, where m is 
the propagation direction, n is the normal to the half-space 
boundary, a subsonic surface wave exists unconditionally 
if the first transonic state is normal. If the first transonic 
state is exceptional and, therefore, necessarily of type 1, a 
SSBW exists - this follows from the definition of an 
exceptional transonic state. In this case a subsonic surface 
wave may or may not exist; in the case of nonexistence a 
two-component surface wave propagating at the limiting 
speed (a so called transonic surface wave) may exist.” 

The statement in a more rigorous form based upon the 
properties of the surface impedance tensor was obtained by 
Barnett and Lothe and given in [1]. The authors considered 
the eigenvalues of  the tensor, i.e., the problem which may 
be regarded as finding such λ that a vector U, satisfying  

 ,UUZ1 λ=  (12) 
exists. A value of λ is an eigenvalue of Z1 if det(Z1ij-
λδij)=0. As it is a third power algebraic equation with 
respect to λ, it is clear that the tensor has three eigenvalues, 
some of which may coincide. As Z1 is a Hermitian tensor, 
its eigenvalues are all real. 

The authors showed that all the three eigenvalues are 
positive at v=0 and decrease monotonically with increasing 
velocity when 0<v≤ vL. Moreover, all the three eigenvalues 
of Z1 cannot be strictly positive in [0; vL]. Thus at least one 
eigenvalue either touches the zero axis at vL or intersects 
with the zero axis at v<vL and goes below zero further. On 
the other hand, at most one eigenvalue may be negative 
when v<vL. As mentioned previously, if det(Z1(v))=0, a 
solution satisfying the free surface condition exists at this 
velocity. However, if det(Z1(v))=0, at least one of its 
eigenvalues vanishes. Therefore, such a solution at the 
velocity chosen exists, if an eigenvalue of Z1 is zero. Thus 
from the fact that all the eigenvalues cannot be strictly 
positive it follows directly that in [0; vL] there necessarily 
exists such a value of velocity at which a solution 
satisfying the free surface condition is possible. From what 
is said follows that the necessary and sufficient condition 
for the existence of  the subsonic surface wave is that one 
of the eigenvalues of Z1 be negative at the limiting velocity 
vL. Such a wave is unique since the only one eigenvalue 
that may become negative in [0; vL] intersects with the λ=0 
axis once, as ∂λI/∂v<0. In the case of nonexistence of the 
subsonic surface wave at least one eigenvalue of Z1 is  zero 
at vL. Generally, a zero eigenvalue at vL may be caused by 

the possibility of existence of a two-component surface 
wave solution as well as an exceptional limiting wave. 
Two zero eigenvalues at once may be caused by the 
existence possibility of the both. 

Conclusions 
The paper by Barnett and Lothe [1] provides a means 

for determining whether a subsonic surface (Rayleigh) 
wave could propagate on a given cut of a given anisotropic 
solid in a given direction. This can be done by calculating 
Ingebrigtsen and Tonning’s surface impedance tensor Eq.7 
and its eigenvalues at the limiting velocity of the first 
transonic state. If one of them is negative, a subsonic 
surface surface wave with vR< vL exists. If there is no 
negative eigenvalue, no subsonic surface wave exists. The 
zero eigenvalues of the tensor (at least one such eigenvalue 
is always present in the latter case) may be caused by a 
surface-skimming bulk wave or a two-component surface 
wave. 
References 

1. Barnett D. M. and Lothe J. Free surface (Rayleigh) waves in 
anisotropic elastic half-spaces: The surface impedance method, 
Proceedings of the Royal Society, London, 1985. A402. P.135-152. 

2. Lothe J. and Barnett D. M. The Present Status of existence 
considerations for acoustic surface waves in anisotropic media, in 
Proceedings of the International Symposium on surface waves in 
solids and layered structures, Novosibirsk, USSR, 1986. 

3. Barnett D. M. Bulk, surface, and interfacial waves in anisotropic 
linear elastic solids, Research trends in solid mechanics, also in 
International Journal of solids and structures, 2000. Vol.37. P.45-54. 

4. Barnett D. M. and Chadwick P. The existence of one-component 
surface waves and exceptional subsequent transonic states of types 2, 
4, and E1 in Anisotropic Elastic media, in Modern theory of 
anisotropic elasticity and applications, eds. Wu J. J., Ting, T. C. T. 
and Barnett D. MSIAM, Philadelphia, 1991. P. 199-214. 

5. Barnett D. M. and Lothe J. The existence of Rayleigh (surface) 
wave solutions in anisotropic elastic Half-Spaces, in modern 
problems in elastic wave propagation, eds. Miklowitz J. and 
Achenbach J. D.- J. Wiley and Sons, New York, 1978. P.445-457. 

6. Barnett D. M. and Lothe J. Consideration of the existence of 
surface wave (Rayleigh wave) solutions in anisotropic elastic 
crystals// Journal of physics F: Metal physics, 1974. No.4. P.671-686. 

7. Auld B.A. Acoustic fields and waves in solids.- John Wiley and 
Sons, New York, London, Sydney, Toronto, 1973. Vol.1. P.236. 

8. Barnett D. M. and Lothe J. Surface wave existence theory for the 
case of zero curvature transonic states in elastic wave propagation, 
eds. McCarthy, M. F. and Hayes, M. A., North-Holland, Amsterdam, 
1989. P.33-38. 

9. Ingebrigtsen K.A. and Tonning A. Elastic surface waves in 
crystals// Phys. Rev., 1969. Vol.184, No.3. P.942-951. 

E. Urba, R. Miškinis  

Paviršinių akustinių bangų sklidimas anizotropiniuose kūnuose 
Reziumė 

Apžvelgiami darbai, kuriuose nagrinėjama paviršinių akustinių 
Relėjaus bangų sklidimo anizotropiniuose kietuosiuose kūnuose 
problema. Pateikiamas tuose darbuose naudojamo Ingebrigtseno ir 
Tonningo paviršiaus impedanso tenzoriaus išvedimas. Aptariamas  
Barnetto ir Lothes pasiūlytas metodas, leidžiantis nustatyti, ar pasirinktos 
orientacijos kietajame kūne gali sklisti paviršinės akustinės bangos. 
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