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Introduction

A procedure for calculating the amplitudes of the
normal and tangential components of the displacement
vector of three-dimensional vibrations of any point on the
surface of mechanical wave system is proposed on the
basis of experimental holographic interfrometry data and
the theory of vibrations of mechanical systems

The problem of determination the amplitude —
frequency response characteristics of a vibrating surface,
which vibrates in three dimensions in the majority of cases,
is encountered in the analysis of vibrations of mechanical
system. The development of methods for calculating the
characteristics of three — dimensional (3D) vibrations
contributes to the solution of vital problems in the
investigation, design, testing, and diagnostics of systems.

There are publications devoted to evaluation of
deformation vector and quantitive analysis of holographic
particle data in [1-11]. The papers give an instrument for
interpretation and calculation component of vector
deformation surface of solid bodies of the simple shapes
and the use for complex forms of the links is not directly
available and need to modified it. The problem is that
procedure and algorithms must include into calculation
relations between vibrations type and the geometry of the
shapes of links. The 3-D vibrations for wave mechanical
system shapes of links take part in the analysis process and
its enable to find algorithms and common methods of
investigation [12-15].

In the present paper a method is described for
calculation of the amplitudes of the normal and tangential
components of the displacement vector of 3D vibrations of
the surface of deformable elements on the basis of
experimental holographic-interferometry data and the
theory of vibrations of mechanical systems. In contrast
with previous publication on this topic, the proposed
method permits a severalfold reduction in the quantity of
input data for analysis of vibrations from holographic
interferograms.

Algorithm calculation 3-D vibration of the links
mechanical systems

We now discuss the essentials of the method [16, 17].

A point i is given on the surface of a vibrating link of
system (see Fig. 1), and the displacement vector of the 3D
vibrations of this point is written in the form

R; (t)=U; (t)i+V; (t)j+W; (k. ey

We represent the components of the vector R;j(t) at the
i-th point in the form
U (t) = U(') cos(at + a; ),

\ (t) = VOi cos(a)t + fi ), (2

W(t) :W(; cos(at +7; ),

where Uoi, Voi, and Woi are the amplitudes of forced
vibrations of the i-th point along the z, t, and r coordinate
axes respectively.

Fig. 1. Diagram for interpretation of measurements of vibrations. The
scheme of optical measurement of vibrations of point i: r, t, Z is
of the orthogonal system of coordinates, R is the vector of
spatial vibrations of the i —th point of the surface, U, V, W are
the components of the vector of spatial vibrations of the i -th
point in the directions of the coordinate axis r, t, z

correspondingly, Ki is the unit vector of lightening of point i,
KO is the unit vector of observation of point i, 91 , (92 are
the angles of unit vectors of lightening and observation with

i i
the coordinate axis r correspondingly, #1' 2 are the angles
between the coordinate axis z and the unit vectors of lightening
and observation correspondingly

The amplitudes of forced vibrations of points of a solid
are determined approximately by expanding the models of
vibration with respect to k. With this in mind, we express

Uol, Vol, and Wo! as follows [18]:

k k
i_ UpU, \yi _ VeV,
UO—ZAJFU»VO—ZAJEJ»
1 1

k
Wy =D AYRI; j=12,...k, 3)
1

where F;j j is the value of the j-th mode for the i-th point, Aj

is the coefficient of influence of the j-th mode, and k is
number of modes analyzed.



Consequently, in order to calculate the component of
3D vibration vector, it is necessary to determine the values

u v w u v w
ofFij , Fij,Fij ,Aj ,Aj,AJ_ o B,

The amplitudes of the first K modes can be calculated
according to previously presented analytical expressions
for modes of vibration, with allowance for the geometry of
investigated links and its attachment boundary conditions.

We consider determination of AjYAV.AW,a, Bj, 7|

on the basis-of holographic interferometry data. We refer
to Fig. 1. We denote the unit vector in the direction of
observation of point i by Kq , and the unit vector in the

direction opposite to the direction of illumination by K|
the sensitivity vector K [18] can be written in the form

K = Ki + KO . (4)
Or, in terms of the components in the basis (z, t, r),
K' =K[F+K{t+K}z, 6))

where Kri, Kti, and Kzi are the projections of the
sensitivity vector on to the r, t, and z axes.
The projections Kr', Kt', and KZ' of the sensitivity

vector K can be expressed in terms of trigonometric
functions of the angles 01, 05, ¢1, ¢ formed by the unit
vectors Kj and Ky with r and z axes according to the
relations

K} :cosgoé +COS(p1|,

Kti =sin :91i sin q)li —sin 0; sin (p; ,

Ki =cos Hli sin goli +cos 6; sin gaiz. 6)

The phase variation in the transmission of light from
the source to point I on the surface of the deformable link
and back to the holographic interferogram as a result of the
surface vibrations is [19]

T — i
Q=""R;(t)K', )

where A is the emission wavelength of the laser used to
record the holographic interferograms.

Substituting the scalar product of the 3D vibration
vector and sensitivity vector in Eq.7, we obtain

= 22Dk k] WK ®)

The characteristic distribution function of the
interference fringes on the surface of the investigated link
in the case of time averaging in harmonic excitation is
given by [20]:

T
TLJ. exp IQ)jt 9)
0

Substituting Eq. 8 in 9 and taking Eq. 2 and 3 into
account, we have

T
leexp[in(Ql cos ot —Q; sin a)t)}:it, (10)
0

X (Q)=

where n is the wave number which is deﬁned as n= 27://1
U cosaiK} +V cos,B,Kt +W cos yiKy,
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Q, =U/ sing;K} +V] sin iK{ +W/ sin 7K. (11)
We wuse this result to write the characteristic

distribution function of the interference fringes on the
surface of the deformable link in the form [19]:

X{(©) = Jo[n(@g + 112,
Comparing the arguments of the function with
allowance for Eq.11, we obtain a nonlinear algebraic

equation for the components A'U,AjV,AjW,ai, Bi» 11 ¢

Q'/12

. {ZA” i Jcosle +(ZAV ,chosﬂ,Kt
T
k _ k _
+| D AR} cosaiK;]z+ D ATRP |sinyiK; +
1 1
k ) Kk )
+| DUARY [sin BK{ +| Y AR sinaiK;]z. (12)
1 1

The known quantities are (2, which are calculated [19]
at the centers of the dark interference fringes from
holographic interferograms of deformable link according
to Eq. 7:

Q, =(p-0.25)7r+0,125/7(p-0,25), (13)
where p is the fringe order on the holographic
interferogram with the | th point at its center, measured

from the brightest nodal line; Kri, Kti, and KZi are

calculated according to Eq. 6, Fj!, Fjj, FjjV are
calculated from analytical equation for the normal
vibrational modes of link as a function of their geometry
and design characteristics.

We use a procedure decribed in [21] to solve the
nonlinear Eq. 12. Several holographic interferograms must
be obtained for different angles of illumination and
observation of the investigated transducer in order to
determine the unknowns in the problem. Making use of
Eq.12, we determine the discrepancies resulting from
experimental errors to the equation

k k
= {Z A F,}‘JcosalK; {Z AJVF,J-VJcos BiK{ +
1 1

="

+

k k _
Z Fj ]COS}/.K ]Z {z A?E}J]sinaiK}+
1

1

k
+| > ARy jsmﬁ,Kt +

1

- TrT | i] Qi
+ ZA] F” Sln)/iKr—T.

1

We differentiate this equation with respect to the
unknown components of Eq. 12 and form a matrix G with
columns

(14)
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N - o,
- gi i g i,
P aa T IO aay T I o
G(') =1
of; of; .
Ga13k =$; Gs.3k 26—7'_- J=12...k (15)
| ]

If g holographic interferograms are recorded for the | —
th point in different directions of illumination and
observation, and if q sets of data are formed from the
results, G is a  x 36(2k +3) matrix.

For an arbitrarily specified vector of unknowns

u u u \ \"
AL AL AL A AL
Al a, By

We seek solutions by iteration in the form o =T 'lp:
q N q )
_ I 1). L 3 I
=y el p == fiaf
1 1

j=12...,(3+3k). (17)

We have calculated the vibrations of a link of
mechanical system the basis of the proposed method. We
obtained several holograms with different directions of the
sensitivity vector relative to the normal to the link surface.

(16)

BH =
Vv (2 o
W ALAT AT

Fig. 2. Holographic interferograms of the vibrations of a
piezoceramic plate: 1 - frequency of vibration plate 45,8 kHz;
the sensivity is directed along the normal to the plate surface; 2
- amplitude distribution of vibrations normal to the surface of
the plate.

Fig. 2. shows a holographic interferogram with the
sensitivity vector directed along the normal to link surface.
The values of the angles during recording of the

holographic interferogram were 61 = 0y = 09, @1 = @y =
900. Substituding the values of the angles in Eq. 6, we
calculate the components of the sensitivity vector Kr', Kt',

and Kzi. The variation of the phase Q is determined from

the holographic interferogram by means of Eq. 3. We find
the brightest fringe on the view plane of the holographic
interferogram, i.e., the so-called nodal fringe. For example,
the orders of the dark fringes in Fig. 2. for the given points
1 -3 are p = 1, 2, 3, respectively; they differ in sign on
either side of the nodal fringe, since the displacements are
in oposite directions. We substitute these values to Eq. 13
and calculate Q. Analytical equations for the calculation of

Fijt, Fij¥, Fjj" are given in [19].
Calculation of sensitivity vector components

It is necessary for calculation of the normal and
tangential components of the three-dimentional oscillation
vector of members of mechanical systems to determine
projections of the sensitivity vectors [16].

It is suggested to perform calculation of projections of
the sensitivity vector directly from image of a holographic
interferogram. In order to do this, we shall use Fig. 1. This
diagram illustrates the connection between the optical train
of the holographic test rig and the measured point lying on
the surface of the studies member. On the surface of the
member the point M is considered, which vector of three-

dimentional oscillations is presented by tangential U, Vi
of normal W components in the orthogonal basis i, ], K

corresponding to directions of coordinate axes z, t, r. The
connection of the measured point of the member with the

holographic test rig is determined via vector Ki which

gives the direction of observation of the investigated point
of the member.

Position of vectors Ki , KO in space are determined by
angles 0, 0,, v, v, ¢, ,which form vectors with the
coordinates axes z, t, r (Fig 1).

In order to calculate the projections K, K, K, of the
sensitivity vector by expressions (6), it is necessary to
determine the angles 0, 6,, ¢, @,. Usually the angles 6,
0, ¢, ¢, were determined experimentally from the

geometry of the optical of holographic train, which causes
errors. Here we propose a procedure which allows the
determination of these angles directly from image of the

holographic interferograms of investigated members
subject to the geometrical form of the member
investigated.

For decoding holographic interferograms we refer to
expressions (1) - (6). From these expressions we see that it
is necessary to determine angles ,, 6,, ¢,, ¢, defining the

location of the vectors Ki , KO in space. Let us suppose

that the aperture angle of observation is very small in
comparison with the distance to the investigated point on
the member. Therefore, if such a distance is selected at
which the size of the investigated member on the image
would be equal to the size of the imaginary image of the
object reconstructed from the holographic interferogram,
then it would be possible to obtain relationships which
allow the calculation of the angles directly from the
photograph. For this, geometrical relationships of the
optical train of the holographic rig, used at the recording of
this member, should be considered.

Let us consider now particular
determination of angles.

The cases when the investigated member is a bar or a
plate are shown in Fig. 3.

In this case, the bar is arranged in the plane of the

cases of the

vectors of illumination Ki and observation KO. On the

rod, there is a fixed point P from which we start to measure
the distance | to the investigated point for which the angles
0,, 0, are being determined. Let us introduce an auxiliary

angle

= arctg HL
e AL, |
where L is the length of the investigated bar determined
from the image, H is the distance from the fixed point on

(18)



the surface of the plate (bar) to the considered point on the
image, A is the distance from the fixed point on the bar to
the aperture, L is the image of the bar (plate) at 5=0.

Fig. 3. The interpretation diagram of the holographic measurement of
the point lying on the bar (plate) surface; K is the sensitivity

vector, Ki is the unit illumination vector of the investigated

point. KO is the unit observation vector of the investigated
point, K, K are projections of the sensitivity vector on axes n,

Z, | is the distance from the fixed point to the aperture, X is the
distance from the aperture to the screen, H is the size of the
bar (plate) on the photograph, yis the aperture angle, « is the
central angle between illumination and observation directions
of the investigated point

The distance | from the fixed point P to the point
considered on the bar is determined as
Atan y

= cos(a + ) —sin(a + ¢)tan y ° (19)
where
tgy =1,
AL,

a is the angle between the directions of illumination and
observation of the reference point P, which is measured
from the optical holographic train and is constant; ¢ is the
angle between the plane of the bar (plate) and the straight
line PP,, which is measured from the optical train of the

holographic rig and is constant. Using the obtained

relationships, the angles ¢, and @, are expressed,
respectively, as
o = arctan{M} (20)
R sing
92=7/+a+(/>—%. 2n

Here, PP, is the distance from the illumination point to
the reference point P, on the reference point p on the bar

(plate).
Let us analyse the case when the investigated member

is a cylinder.
Consider now the cylinder which axis is located in the

plane of observation K, and illumination K; vectors is
perpendicular to the plane of the observation and

10
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illumination vectors and meets the plane of observation
K, and illumination K; vectors at a certain angle.

Fig. 4 presents the diagram corresponding to the case
when the axis of the cylinder is located in the plane of
vectors of observation Ko and illumination K;j. The
investigated point lies on the surface of the cylinder at the

distance | from the fixed point p. The angle y can be
determined from expression :

Y= arctan{L}
(A-R)Ly |’

where H is the distance from the reference axis to the
considered point on the image, L is the length of the

(22)

image of the cylinder at /=0 (when the cylinder axis is
parallel to the screen), L and R are length and the radius of
the cylinder, respectively.

Fig. 4. The interpretation diagram of the holographic measurement of
the point lying on the surface of the cylinder for the case when
the cylinder axis is located in the plane of unit vectors of
illumination Ki and observation KO , Kr , KZ are

projections of sensitivity vector on axis r,z respectively, | is the
axial distance from the investigated point on the cylinder
surface to the fixed point P, X is the distance from screen to
aperture, A is the distance from the fixed point to aperture, R
is the radius of the cylinder, a is the angle between
illumination and observation directions

From Fig. 4 we also have:
| = Rtan(a + ¢ — j3)

R sin(a + ﬂ)— Asiny cos(a—ﬂ)
7= R cos(a + )+ Asin y cos(a — f3)

(23)

24

where PP, is the distance from the fixed point P on the
cylinder axis to the point of illumination P, which is

determined experimentally from the optical circuit of the
holographic rig, f is the angle defining the cylinder
position relative to the observation direction and obtained
experimentally from the optical train of the holographic
rig, o is the central angle between the direction of
observation and illumination, which is constant and is
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determinable experimentally from the holographic optical
train.
The angles ), 6, for this case can be determined from

expressions:
6, = arctan | - PR sm(a—ﬁ) , (25)
R — PR cos(a - f3)
O,=y+p (26)

Fig. 5 presents the diagram corresponding to the case
when the axis of the cylinder is perpendicular to the plane
of the vectors of observation and illumination.

Here we obtain the following relationships:

} 27

HR
y = arctan

AR,
where H is the distance from the axis of the cylinder to the
point considered on the photograph, A is the distance from
the axis of the cylinder to the aperture, R is the radius of
the cylinder, R, is the radius of the cylinder on the

photograph.
L=y+ arccos( As;n 7} , (28)
PP, +
6 = arctan ! cos.(a 'H) , 29)
R-PPR sm(a+ ﬁ)
V4

92=7+3—ﬂ, (30)

Y
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Fig. 5. The interpretation diagram of the holographic measurement of
the point lying on the surface of the cylinder for the case when
the cylinder axis is perpendicular to the plane of unit

K

vector, K ro Kt are the projections of sensitivity vectors on

illumination and observation vectors is the sensitivity

axis r, t; R is the radius of the cylinder, A is the distance from
the center of the cylinder P to the aperture, X is the distance
from aperture D to screen, y is the aperture angle

where PP, is the distance from the point of illumination P,

to the center of rotation of the cylinder P, f is the angle

11

defining the coordinate of the investigated point on the
surface, « is the central angle between the directions of
observation and illumination determinable experimentally
from the optical holographic train.

Fig. 5 presents the diagram corresponding to the case
when the axis of the cylinder meets the plane of vectors of
observation and illumination at an some angle. In this case,
the angles ¢, and ¢, between the cylinder element and the

vectors of illumination Ki and observation KO are

determined experimentally. Since the plane of the vectors
of illumination and observation makes an angle with the
axis of the cylinder, the intersection of this plane with the
cylinder forms an ellipse (see Fig. 7). Correlations for the
determination of angles 6,, 6, for the given case are given

below. From Fig. 7 we have:
HM"R

=arctg ,
A Vv

h
e

(€2))

where H" is the distance from the axis of the cylinder to the
considered point on the photograph; R is the radius
representing the minor semi-axis of the ellipse b=R;

Fig. 6 The interpretation diagram of the holographic measurement of
the point lying on the cylinder surface for the case when the
plane of unit illumination and observation vectors meet the
cylinder axis at an angle, R is the cylinder radius, y is the
major semi-axis of the ellipse, b is the minor semi-axis of the
ellipse, X is the distance from aperture to screen, H" is the
position of point M on the photograph

A is the distance from the axis of the cylinder to the
aperture, R is the radius of the cylinder on the image.

The angle S defining the position of the investigated
point on the ellipse can be expressed as:
. h
p= 7/h +arccos ASY ,

P

where I is the radius of the investigated point which is

(32)

,0:\/0:2 cos? /5'+b2 sin? g (33)
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Fig. 7. The interpretation diagram for the holographic measurement
of the point lying on the cylinder surface for the case when
intersection of the plane of unit vectors of illumination and
observation with the cylinder axis forms an ellipse: K is the
sensitivity vectors, K, K, are the projections of sensitivity

vectors on axis I, t, Kl, KO are the unit vectors of

illumination and observation, a is the major semi-axis, b is the
minor semi-axis, p is the vector of oscillations of the point, A is
the distance from the cylinder axis to the aperture, X is the

distance from aperture to screen, HD s the position of the
point designated by vector p on the photograph

Since o =R/cos 19;’ is the major semi-axis of the

ellipse (0", is the angle between the plane of the drawing

and the plane perpendicular to the axis of the cylinder),
then:

p:\/[RZ /(0056’;’)2}0052 L+ R? sin? p. (34)

Then the angles of illumination and observation 01, 92

will be expressed, respectively as:

6, = arctan PR cos.(a hi ﬂ) s (35)
p—PR sm(a+ ﬂ)
0r=1"+7-5. (36)

Here, PP, is the distance from the point P, of

illumination to the axis of the cylinder, « is the angle
between the directions of illumination and observation of
the point P, which is obtained from the optical holographic
train.

Fig. 8 presents the diagram corresponding to the case
when the investigated member is a sphere. The auxiliary
angle « is determined by means of interactions from the
expression:

Rg —F

Rsl —tg(a/z)]} .

Here, R, is the radius of the sphere, F is equal to the

a= arctan{ 37

distance CT (see Fig. 8). The angle o has to be calculated
just once. In order to describe a certain point on the sphere,
the angle A is introduced, which is expressed as follows:

12
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Fig. 8. The interpretation diagram of the holographic measurement of

the point lying on the sphere surface: S is the illumination
point; K is the observation point, Ki , KO are the unit vectors
of illumination and observation, respectively, of investigated
point, Rg is the radius of the sphere, O is the center of the
sphere, OR is the distance from the center of the sphere to
screen, O'T ' is the radius of the sphere on the photograph, RP’
is the radius of the investigated point on the photograph, « is
the perspective angle, yis the aperture angle

= arctan Riga
Vp D2 |’

(3%

Here, R corresponds in Fig. 8 to the distance
Q'P',defining the position of the investigated point on the
photograph of the holographic interferogram, D2 is the
radius of the sphere on the photograph. It is necessary to
calculate angle A for each investigated point which is

defined by angle 6. For the same point it is necessary to
calculate angles #and £ from expressions:

0 =arcsin{(a/Rs )+1]siny  f~ 7. (39)
T
p==-0. (40)

The angles of illumination @, and observation 6, are

expressed, respectively, as
6, = arctan|OS cos(S + &)/[Rs —OS sin(B+ )], (41)
92 =0+ Y,
where OS is the distance from the illumination point S to
the center of the sphere, @ is the central angle between the
directions of illumination and observation, which is
determined experimentally from the optical holographic
train. Thus the obtained relationships allow determination
of projections of the sensitivity vector directly from the
holographic interferograms, depending on the optical
holographic train and the geometrical form of the member
of a precision mechanism.

Algorithm of calculation of the 3-D Vibrations at
any point of the surface

The relation of the component of the vector of spatial
vibrations with the optical scheme of the experiment is the
following (see Eq. 8):

A
Z-Q=U(soce, +cos g, )+
2r
+V (sin 0, sin ¢y —sin 6, sin ¢, )+ (42)
+W (cos 0, sin ¢y +cos 6, sin @, )
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where | is the wavelength of the laser used to obtain the
holographic interferogram, 0, 0,, ¢, @, are the angles of
illumination and observation that are used when recording
the interferogram, W is the parameter determined from
dark interferentional bands at the center of the
interferogram.

By taking into account Eq. 42 for the performed m
measurements we construct the system of equations

al);
2z
—sin 99) sin q)g) )+

=U (1)(005 gagl) +cos ¢1(1))+V (1)(sin 01(1) sin gal(l) -

+W (l)(cos 491(1) sin (01(1) +cos 499) sin qag))

o)
2z
+V @) (sin 6’1(2) sin (pl(z) —sin ng) sin (pgz))+

~U@lcos ¢)§2) +cos gol(z) )+

+W @) (cos 91(2) sin (pl(z) +cos 952) sin gogz))

Qz(';/% =U (i)(cos gog) +cos qol(i))+
+V(i)(sin«91(i)sin(p(i)—sine()sm(p())+ (43)

+W (i)(cos 491( ) sin (p( ) + cosH sin @ )

Q(m)/l _u (m)(c
2z

+V (m)(sin ﬁl(m) sin (pl(m) —sin ng) sin (/)gn))—k

0s ¢gm) +cos (pl(m) )+

+W (m)(cos Hl(m) sin ¢)1(m) +cos Hz(m) sin (ng))

The components U®, VO WO we express in the
following way [18]:

ZAU ij -
ZAW ij -

where U®, V(') and WO are the corresponding tangential
and normal components of the vector of spatial vibrations
at the point |, Fiju, Fijv’ FijW are the corresponding values of
the amplitudes of vibrations at the point i of the j-th
eigenmode that are calculated according to the analytical
expressions. A", A", A" are the influence coefficients of
the j-th eigenmode.
After substitution of Eq. 44 into Eq. 43 we obtain

ZAV ij

(44)

ol

( q
2”’1 > ARUKS JFZAVF1 k(! +ZAWF1VJVK£),
1
Q(Z)’i_ . AVEY K(2) LN AVEY KRS AWEW K (2)
2”_21212 leltzjzlr’
1
Q(l)ﬂ < V WEeW
: =Y AR +ZA +ZA Fi K(i
T
1

(45)

q q
URSKIM L ST AR K™ S AlE s (™)
1 1

In order to calculate the components of the vector of
spatial vibrations at any point on the surface of the rigid
body it is necessary to find the influence coefficients of the
modes of eigenvibrations A}, A" and A". For this purpose
we write the system of equations Eq. 45 in the form

Wi=[FlA} (46)

where F is the matrix

Fli.k]= K i ,J ,
Fli,q+k]= K Fil,
Fli,2q+k]=KDFY
(i=12,..mk=12.,9); (47)
W is the column vector of dimension m,
(1) (2) (m)
Wwi}= {Q A, Q Ay, Q@ (48)
2r 2 2

We solve Eq.46 by the method of least squares, using
the computer, {W} is found from the holographic
interferograms, [F] we calculate according to the analytical
relationships, depending on the geometry and the
conditions of fastening of the rigid body.

After the calculation of {A} we use Eq. 46 again. We
give the coordinates of any point and calculate the value of
[F]. Because we have already calculated {A}, so after
substitution of the values of [F] and {A} into Eq. 46 we
calculate the components of the vector of spatial vibrations
at any point of the surface.

The presented method is convenient because having
several characteristic values of the vector of vibrations of
the surface that are obtained from the holographic
interferograms we can calculate the amplitude of the
vibrations at any point of the surface of the rigid body.

Uncertainty estimation in process of numerical
identification from a holographic interference
pattern

Analysis of uncertainties occurring in the process of
numerical identification of spatial parameters of an
analysed object from its laser holographic interferogram is
presented in [22]. The specific attention is devoted to the
numerical identification of the centers of dark interference
bands. The presented evaluation of a total uncertainty of
the analysis may help to optimise the identification process
and to avoid critical mistakes in the procedure for
calculation of parameters of the analysed object.

Interpretation of laser holographic interferograms is a
rather complicated and perplexing procedure, especially if
the geometry of the analysed object is not evident. There
are methodologies used for the identification of object
deformations from the interference band pattern, mainly
based on the recognition of the centers of interference
bands [23-26]. Such methodologies give an opportunity to
calculate general characteristics of spatial deformations
from time averaged holograms.

The process of defining the characteristics of the
dynamical system from its holographic interference pattern



is relatively heavily imposed by different sources of errors
starting from uncertainties reflecting the geometric
characteristics of the optical scheme, finishing with the
uncertainties caused by numerical procedures for the
identification of interference band centers. The process of
decision making from the holographic patterns thus may be
consequenced by rather high error levels. The knowledge
about these errors and their ranges is quite critical in
applications when the necessary precision level in to be
maintained.

The proposed method of spatial deformations
identification is based on the fact that steady state
vibrations of a structure may be expressed as a linear
mixture of natural eigenmodes . Though the calculation of
weight coefficients of appropriate eigenmodes also serves
as a new source of errors, such a methodology may help to
understand the dynamical processes of the analysed object
in a better way, and thus compensate the uncertainties
originated from other sources.

The process of reconstruction of spatial deformations
vector from laser optic interference hologram is
schematically shown in Fig. 9.

Errors of location
of interference
bands centers
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Basically it consists of the following stages:

e Scanning and filtering the image of an optical

hologram (Block 1).
Numerical interpretation of interference bands
and reconstruction of spatial deformation vector (Block 2).
Numerical adjustment of reconstructed spatial
deformation vector (Block 8).

The process of reconstruction of spatial vibrations
yields the occurrence of inaccuracies which are
appropriately grouped as errors originating from the
numerical location of centers of interference bands (Block
3), errors associated with uncertainties of geometrical
parameters of the optical system (Block 4), and errors from
the approximation through the natural eigenmodes (Block
5). All uncertainties are summing up (Block 6) and
forming the total uncertainty of reconstructed deformation
vector (Block 7), which must be evaluated while
constructing the final shape of spatial vibrations (Block 8).

Further considerations about the total uncertainty of
the reconstruction require the analysis of every individual
source of errors.

=)
T S @
Interpretation e =N
Opical of interference Tot.al Adjusted
Laser . bands- N Uncertainties N N uncertainty of S vector of
interference [ reconstruf:tion =1 of geometrical ] Z ’—V reconstmgted spatial
hologram of spatial magnitudes deformation deformations
deformation \_ - vector
vector
N { ‘- - J e J
" Errors of
decomposition
to natural
eigenmodes

-

Fig. 9. The schematic diagram of uncertainty estimation in the process of reconstruction of deformation vector from the optical interference

hologram.

The reconstruction of spatial object characteristics
from its interference pattern is based on the identification
of the centers of dark interference bands [23]. Thus the
uncertainty of the numerical analysis procedure in
principle depends on the ability of the software to
determine the centers of an interference band with a
predefined accuracy.

Fig. 3.3.2 present a process of identification of centers
of interference bands from the measured holograms with
following numerical reconstruction of bands and statistical
displacement identification on the surface of the measured
object.

It is obvious that the accuracy of determination of
interference lines in the holograms varies from +1,0 up to
+ 3,0 mm in the zones where the angle between the
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illumination vector Kj and the normal vector of the surface

is less than m/4. Thus, the optical phase measurement
uncertainty 8(AQ) < 0,3 rad. It is apparent, that if the angle
between the illumination vector and the normal vector of
the surface is turning to become larger, the errors from the
band identification may be sufficiently larger (Fig. 10 -
bottom part of the pattern). Of course, one could not expect
the original hologram to sustain a good picture quality in
this region. In such a case a poor quality of the original
hologram cannot lead to perfect results of the numerical
analysis.

The evaluation of uncertainties of the geometrical
parameters of the system requires the definition of the
mathematical relationships between the illumination and
sensitivity vectors. The mathematical model of the
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hologram registration scheme evaluates the position of
lighting and observation vectors, as well as the position of
the analysed object itself. Let the illumination vector

K; and the observation vector K, be constructed in the co-

ordinate set I, t, Z with corresponding angles 8,, ¢|, y; and
&, ¢, w1t is obvious that (see Eq. 6).

K =cosd! -7 +cosp] T +cosy) -Z,

K] =cosd) T +cosp) T +cosy) - Z,

Fig. 10. Numerical identification. (1) - Scanned and filtered hologram
of an excited rectangular plate. (2) - Numerical identification
of maximum and minimum values of illumination. (3) -
Improved identification of maximums in the centers of
interference bands. (4) - Numerical reconstruction of
interference bands from the co-ordinates of maximums of
interference bands.

Now Eq. 7 can be expressed in the matrix format:
A

o 80)=[K]- R} (50)
where

AQ}={AQ,,AQ,,AQ;},

{Ri={u,v,w}, ©b

K-

cos 611 +cos 495 cos (oll +cos go% cos l//ll +cos y/%

cos x//l2 +cos 1//% .

cos n//13 +cos z//;

c05912 +cos 922 cos (/712 +cos go%

3 3 3 3
cosO] +cosf; cosp; +cos@,

Under the assumptions that the uncertainties of the
components of the vibration vector are the same in all three
directions:

[ QU] =[ov] =[ow| = v,

and therefore:

5(a0y)=6(AQ,) = 5(A03) = 5(a0), (52)
the phase uncertainty can be expressed from Eq. 51:
Sipg < 5(AQ)~“K‘1“ A (53)

where “K_l“ is the matrix norm, i.e. the maximum radical

of eigenvalue of product lKT J [K].

From Eq. 53 it is clear that the analysis of uncertainty
of numerical identification of &A€) is necessary in
addition to errors of geometrical parameters.
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From Eq. 1 — Eq. 3 it can be seen that the phase

uncertainty  dvgis  dependant from the angles
Hjaezjawlj’(pzjal//lj’ylzj and 58
-1
50-[K - [Ko| R}
5V® < 5 (54)

NG

where ||R|| denotes the norm of the vector R, i.e.
S S
JU?Z+v21w? ,
[Kol=

sin 4911 +sin 9%

IRl - and

sin ¢)11 +sin (o% sin t//ll +sin 1//%

sin 012 +sin :922 sin golz +sin gozz sin !//12 +sin 1//22 .

: 3 : 3 : 3 : 3 : 3 : 3
sin@] +sin@; sing; +sing; siny] +siny;

The typical experimental geometric uncertainty of the
angles 191],92],(plj,(p21,l//11,(/lzj is usually not greater than

+0,004 rad.

Let us evaluate errors occurring in the process of
decomposition of motion to natural eigenmodes. From Eq.
44 it is obvious that the identification of the natural

eigenmodes F,J-X , and appropriate weighting coefficients

X
Aj
Xe {U ,V,W}, j varies from 1 up to the number of highest
evaluated eigenmode, may originate quite serious
uncertainties and impact the total uncertainty of the
numerical experiment (Fig. 9). Moreover, the precise
knowledge about the physical object is required for the
calculation of its eigenshapes. The alternation of boundary
conditions may change the shapes of natural eigenshapes
in a radical way.

Nevertheless, such a methodology may help to identify
the spatial deformations in case when the quality of the
optical hologram is poor. In other words, losses in errors
compensate the damages of the original hologram.

Fig. 10-(1) presents a scanned and filtered optical time
averaged hologram of a rectangular plate, laser wave
length A = 0,63 um. It may be noted that the bottom center
area of the hologram holds a minimum useful information.
This is mainly due to incorrect illumination vector position
relatively to the surface of the plate. Numerical
reconstruction of the centers of interference bands (Figures
10-(2)-(3)) clearly accents the problem. Straightforward
identification of the spatial deformations would leave this
zone undefined.

The knowledge of the physical properties of the plate
(all four boundary side walls of the plate are fixed) may
help to identify the spatial deformations. The equation of
flexural vibrations of a plate is written in the form [27]:

Eh?

. VAu+ phti-f =0,
12‘1—1/ ’

where E is the Young’s modulus, p, is the density of plate
material, h is the thickness of the plate, v is the Poisson’s
ratio, f is the exciting force, U is displacement of the plate.

of the corresponding eigenmodes (here

(35)



Natural eigenmodes are sought in the form:

U y.t)=U(x ye' =X (x)-¥(y)-e'*, (56)
where t is the time, @ is the natural frequency. The
approximated solution takes the following form:

X, (x)= Asin(n?ﬁ- xj,

Ym(y)=B sin(%~ yj,

where a, b are the plate dimensions in X and y directions,
respectively, n, m are the number of half-waves in X and y
directions.

The reconstruction of the first natural eigenmodes and
calculation of appropriate weighting coefficients shows
that the coefficient A, tends to unity, rest tending to zero,
thus the plate’s displacement vector is coinciding with
motion described by Eq.57 atn=1, m= 1.

The uncertainty of such an evaluation ovyy is highly

(57)

dependent mainly on two factors: the accuracy of band
identification and the accuracy of eigenmodes calculation.
The evaluation of the second uncertainty is in its term very
much dependant on the knowledge about the boundary
conditions of the object. If the boundary conditions are
clearly defined (as in the presented example), then

5VXY =2‘5VAQ (58)

Total uncertainty of identification of spatial vibrations
can be expressed in the following way:

5V=5VAQ +5\/® +§VXY .
here all three terms of summation are defined earlier.

The validity of numerical identification of spatial
vibrations from a holographic interference pattern depends
on both on the geometrical and numerical uncertainties. An
estimate of these uncertainties may help to avoid errors in
interpreting the holographic interferograms. Moreover,
application of approximation through natural eigenmodes
helps to identify even those regions of the hologram which
are not vivid due to technical or geometrical reasons.

The advantages of such a type of interpretation of
holographic images may be clearly illustrated by the
following practical example. The original hologram of a
vibrating plate with left and right fixed borders (upper and
bottom edges are free) is presented in Fig. 11.

(39)

Fig. 11. Interpretation hologram of holographic images. (1) -

experimental holographic interferogram, (2) filtered
hologram, (3) — deformable surface in numerical expression

The reconstructed motion is of a fifth eigenmode with
coefficients m = 3, n = 2 (Eq. 57), coefficient A; = 0,96
with the uncertainty +£0,053.

The total uncertainty affecting the process of
reconstruction of spatial deformation vector from optical
laser interference hologram has been evaluated. Every
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separate source of uncertainties is considered presenting a
practical example of reconstruction. A new method of
approximation based on the eigenshapes of the system is
presented. The analysis performed may help to get a better
and more precise knowledge about the investigated
models.

Conclusions

The proposed procedure and algorithm for the analysis
of holographic interferograms can be used to optimize the
operation of wave mechanical systems in real structures.
Method is also applicable to the analysis of holographic
interferograms  of three-dimensional vibrations of
deformable solids of any geometry of shapes. Presented
methods allow to do quantitive interpretation of the
interference patterns in the cases of different types of
vibrations. Algorithm of calculation of components vector
sensitivity according can be used for design of an
automated fringes analysis system.

A system for holographic interferometry images
quantitive parameter identification is developed and can be
useful for the investigation for the links of different shapes.
An interference bands identification algorithm is coupled with
the data of geometric parameters of experimental set-up thus
producing a powerful tool for object identification.

The total uncertainty affecting the process of
reconstruction of spatial deformation vector from optical
laser interference hologram has been evaluated.

Reconstruction of the interference fringes based on the
eigenmodes increases accuracyof unwrapping fringes
compared with the others methods.
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A. Palevicius

Suvidurkinty laike holografiniy interferogramy trimaciy virpesiy
kiekybinio jvertinimo teorija

Reziume

Straipsnyje pateikiama metodika kiety deformuojamy kiiny
pavirSiaus virpesio vektoriaus normalinei ir tangentinéms dedamosioms
apskaiciuoti pagal holografines interferogramas. Nagrin¢jami atvejai, kai
deformuojamas kiinas yra strypas, plokstelé, cilindras arba sfera.

Pateikta interferogramy analizés teorija leidzia kiekybiskai jvertinti
harmoniniu désniu apraSomas mechanines sistemas, kuriy darbas
pagristas grandziy virpéjimu ultragarsiniy dazniy juostoje.
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