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Introduction 

A procedure for calculating the amplitudes of the 
normal and tangential components of the displacement 
vector of three-dimensional vibrations of any point on the 
surface of mechanical wave system is proposed on the 
basis  of experimental holographic interfrometry data and 
the theory of vibrations of mechanical systems  

The problem of determination the amplitude – 
frequency response characteristics of a vibrating surface, 
which vibrates in three dimensions in the majority of cases, 
is  encountered in the analysis of vibrations of mechanical 
system. The development of methods for calculating the 
characteristics of three – dimensional (3D) vibrations 
contributes to the solution of vital problems in the 
investigation, design, testing, and diagnostics of systems. 

There are publications devoted to evaluation of 
deformation vector and quantitive analysis of holographic 
particle data in [1-11]. The papers give an instrument for 
interpretation and calculation component of vector 
deformation surface of solid bodies of the simple shapes 
and the use for complex forms of the links is not directly 
available and need to modified it. The problem is that 
procedure and algorithms must include into calculation 
relations between vibrations type and the geometry of the 
shapes of links. The 3-D vibrations for wave mechanical 
system shapes of links take part in the analysis process and 
its enable to find algorithms and common methods of 
investigation [12-15].  

In the present paper a method is described for 
calculation of the amplitudes of the normal and tangential 
components of the displacement vector of 3D vibrations of 
the surface of deformable elements on the basis of 
experimental holographic-interferometry data and the 
theory of vibrations of mechanical systems. In contrast 
with previous publication on this topic, the proposed 
method permits a severalfold reduction in the quantity of 
input data for analysis of vibrations from holographic 
interferograms. 

Algorithm calculation 3-D vibration of the links 
mechanical systems 

We now discuss the essentials of the method [16, 17]. 
A point i is given on the surface of a vibrating link of 

system (see Fig. 1), and the displacement vector of the 3D 
vibrations of this point is written in the form 

( ) ( ) ( ) ( ) .ˆˆˆ kjiR tWtVtUt iiii ++=  (1) 

We represent the components of the vector Ri(t) at the 
i-th point in the form  

( ) ( ),cos0 i
i atUtU += ω  

( ) ( ),cos0 i
i tVtV βω +=   (2) 

( ) ( ),cos0 i
i tWtW γω +=  

where U0
i, V0

i, and W0
i are the amplitudes of forced 

vibrations of the i-th point along the z, t, and r coordinate 
axes respectively. 

 

Fig. 1. Diagram for interpretation of measurements of vibrations. The 
scheme of optical measurement of vibrations of point i: r, t, z is 
of the orthogonal system of coordinates, R is the vector of 
spatial vibrations of the i –th point of the surface, U, V, W are 
the components of the vector of spatial vibrations of the i -th 
point in the directions of the coordinate axis r, t, z 

correspondingly, iK̂  is the unit vector of lightening of point i, 

0K̂  is the unit vector of observation of point i, '
1θ , '

2θ  are 
the angles of unit vectors of lightening and observation with 

the coordinate axis r correspondingly, ϕ ϕ1 2
i i,   are the angles 

between the coordinate axis z and the unit vectors of lightening 
and observation correspondingly  

The amplitudes of forced vibrations of points of a solid 
are determined approximately by expanding the models of 
vibration with respect to k. With this in mind, we express 
U0

i, V0
i, and W0

i as follows [18]: 
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where Fij is the value of the j-th mode for the i-th point, Aj 
is the coefficient of influence of the j-th mode, and k is 
number of modes analyzed. 



ISSN 1392-2114 ULTRAGARSAS, Nr.1(38). 2001. 

 8

Consequently, in order to calculate the component of 
3D vibration vector, it is necessary to determine the values 
of F
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The amplitudes of the first k modes can be calculated 

according to previously presented analytical expressions 
for modes of vibration, with allowance for the geometry of 
investigated links and its attachment boundary conditions. 

We consider determination of Aju,Ajv,Ajw,αi, βi, γI 
on the basis-of holographic interferometry data. We refer 
to Fig. 1. We denote the unit vector in the direction of 
observation of point i by Ko , and the unit vector in the 
direction opposite to the direction of illumination by Ki  
the sensitivity vector K  [18] can  be written in the form 

0
ˆˆ KKK += i .  (4) 

Or, in terms of the components in the basis (z, t, r), 
,ˆˆˆ ztrK i

z
i
t

i
r

i KKK ++=   (5) 

where Kri, Kti, and Kzi are the projections of the 
sensitivity vector on to the r, t, and z axes. 

The projections Kri, Kti, and Kzi  of the sensitivity 
vector K can be expressed in terms of trigonometric 
functions of the angles θ1, θ2, ϕ1, ϕ2 formed by the unit 
vectors Ki and Ko with r and z axes according to the 
relations 

,coscos 12
iii

zK ϕϕ +=  

,sinsinsinsin 2211
iiiii

tK ϕθϕθ −=  

.sincossincos 2211
iiiii

rK ϕθϕθ +=  (6) 
The phase variation in the transmission of light from 

the source to point I on the surface of the deformable link 
and back to the holographic interferogram as a result of the 
surface vibrations is [19] 

( ) ,2 i
i t KR

λ
π

=Ω   (7) 

where λ is the emission wavelength of the laser used to 
record the holographic interferograms. 

Substituting the scalar product of the 3D vibration 
vector and sensitivity vector in Eq.7, we obtain 

( ) ( ) ( )[ ].2 i
r

i
t

i
z KtWKtVKtU ++=Ω

λ
π . (8) 

The characteristic distribution function of the 
interference fringes on the surface of the investigated link 
in the case of time averaging in harmonic excitation is 
given by [20]: 

( ) ( ) .exp1

0

dti
T

X
T

∫ Ω=ΩΦ  (9) 

Substituting Eq. 8 in 9 and taking Eq. 2 and 3 into 
account, we have 

( ) ( )[ ] ,sincosexp1

0
21 dtttin

T
X

T

∫ Ω−Ω=ΩΦ ωω  (10) 

where n is the wave number, which is defined as n=2π/λ; 
,coscoscos 0001

i
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zi

i KWKVKU γβα ++=Ω  

.sinsinsin 0002
i
ri

ii
ti

ii
zi

i KWKVKU γβα ++=Ω  (11) 
We use this result to write the characteristic 

distribution function of the interference fringes on the 
surface of the deformable link in the form [19]: 

Xf(Ω) = Jo[n(Ω1 + Ω2)]1/2.  
Comparing the arguments of the function with 

allowance for Eq.11, we obtain a nonlinear algebraic 
equation for the components Aju,Ajv,Ajw,αi, βi, γI : 
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The known quantities are Ω, which are calculated [19] 
at the centers of the dark interference fringes from 
holographic interferograms of deformable link according 
to Eq. 7: 

( ) ( ).25,0/125,025,0 −+−=Ω ppp ππ , (13) 

where p is the fringe order on the holographic 
interferogram with the I th point at its center, measured 
from the brightest nodal line; Kri, Kti, and Kzi are 

calculated according to Eq. 6, Fiju, Fijv, Fijw are 
calculated from analytical equation for the normal 
vibrational modes of link as a function of their geometry 
and design characteristics. 

We use a procedure decribed in [21] to solve the 
nonlinear Eq. 12. Several holographic interferograms must 
be obtained for different angles of illumination and 
observation of the investigated transducer in order to 
determine the unknowns in the problem. Making use of 
Eq.12, we determine the discrepancies resulting from 
experimental errors to the equation 
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We differentiate this equation with respect to the 
unknown components of Eq. 12 and form a matrix G with 
columns 
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If q holographic interferograms are recorded for the I –
th point in different directions of illumination and 
observation, and if q sets of data are formed from the 
results, G is a q x 36(2k +3) matrix. 

For an arbitrarily specified vector of unknowns 
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⎥

⎦

⎤

⎢
⎢

⎣

⎡
=Η

γβαϖϖϖ ,,,,...,,,..,

,.,,,...,,

21

2121

k
v
k

vvu
k

uu

AAAA

AAAAA
B . (16) 

We seek solutions by iteration in the form σ = Γ-1p: 

( ) ( );
1

i
j

q
i

iij GG∑=Γ  ( ),
1
∑−=

q
i
jij GfP   

( )kj 33...,2,1 += .  (17) 
We have calculated the vibrations of a link of 

mechanical system the basis of the proposed method. We 
obtained several holograms with different directions of the 
sensitivity vector relative to the normal to the link surface. 

 

 

Fig. 2. Holographic interferograms of the vibrations of a 
piezoceramic plate: 1 - frequency of vibration plate 45,8 kHz; 
the sensivity is directed along the normal to the plate surface; 2 
- amplitude distribution of vibrations normal to the surface of 
the plate. 

Fig. 2. shows a holographic interferogram with the 
sensitivity vector directed along the normal to link surface. 
The values of the angles during recording of the 
holographic interferogram were θ1 = θ2 = 0o, ϕ1 = ϕ2 = 

90o. Substituding the values of the angles in Eq. 6, we 
calculate the components of the sensitivity vector Kri, Kti, 

and Kzi. The variation of the phase Ω is determined from 
the holographic interferogram by means of Eq. 3. We find 
the brightest fringe on the view plane of the holographic 
interferogram, i.e., the so-called nodal fringe. For example, 
the orders of the dark fringes in Fig. 2. for the given points 
1 –3 are p = 1, 2, 3, respectively; they differ in sign on 
either side of the nodal fringe, since the displacements are 
in oposite directions. We substitute these values to Eq. 13 
and calculate Ω. Analytical equations for the calculation of 
Fiju, Fijv, Fijw are given in [19].  

Calculation of sensitivity vector components 
It is necessary for calculation of the normal and 

tangential components of the three-dimentional oscillation 
vector of members of mechanical systems to determine 
projections of the sensitivity vectors [16]. 

It is suggested to perform calculation of projections of 
the sensitivity vector directly from image of a holographic 
interferogram. In order to do this, we shall use Fig. 1. This 
diagram illustrates the connection between the optical train 
of the holographic test rig and the measured point lying on 
the surface of the studies member. On the surface of the 
member the point M is considered, which vector of three-
dimentional oscillations is presented by tangential U , V  
of normal W  components in the orthogonal basis kji

rrr
,,  

corresponding to directions of coordinate axes z, t, r. The 
connection of the measured point of the member with the 
holographic test rig is determined via vector iK̂  which 
gives the direction of observation of the investigated point 
of the member. 

Position of vectors 0
ˆ,ˆ KKi  in space are determined by 

angles θ1, θ2, ψ1, ψ2, ϕ1, ϕ2,which form vectors with the 
coordinates axes z, t, r (Fig 1). 

In order to calculate the projections Kr, Kt, Kz of the 
sensitivity vector by expressions (6), it is necessary to 
determine the angles θ1, θ2, ϕ1, ϕ2. Usually the angles θ1, 
θ2, ϕ1, ϕ2 were determined experimentally from the 
geometry of the optical of holographic train, which causes 
errors. Here we propose a procedure which allows the 
determination of these angles directly from image of the 
holographic interferograms of investigated members 
subject to the geometrical form of the member 
investigated. 

For decoding holographic interferograms we refer to 
expressions (1) - (6). From these expressions we see that it 
is necessary to determine angles θ1, θ2, ϕ1, ϕ2 defining the 

location of the vectors 0
ˆ,ˆ KKi  in space. Let us suppose 

that the aperture angle of observation is very small in 
comparison with the distance to the investigated point on 
the member. Therefore, if such a distance is selected at 
which the size of the investigated member on the image 
would be equal to the size of the imaginary image of the 
object reconstructed from the holographic interferogram, 
then it would be possible to obtain relationships which 
allow the calculation of the angles  directly from the 
photograph. For this, geometrical relationships of the 
optical train of the holographic rig, used at the recording of 
this member, should be considered. 

Let us consider now particular cases of the 
determination of angles. 

The cases when the investigated member is a bar or a 
plate are shown in Fig. 3. 

In this case, the bar is arranged in the plane of the 
vectors of illumination iK̂  and observation 0K̂ . On the 
rod, there is a fixed point P from which we start to measure 
the distance l  to the investigated point for which the angles 
θ1, θ2 are being determined. Let us introduce an auxiliary 
angle 

⎥
⎦

⎤
⎢
⎣

⎡
=

vAL
HLarctgγ ,  (18) 

where L is the length of the investigated bar determined 
from the image, H is the distance from the fixed point on 



ISSN 1392-2114 ULTRAGARSAS, Nr.1(38). 2001. 

 10

the surface of the plate (bar) to the considered point on the 
image, A is the distance from the fixed point on the bar to 
the aperture, Ln is the image of the bar (plate) at β=0. 

 

Fig. 3. The interpretation diagram of the holographic measurement of 

the point lying on the bar (plate) surface; K̂  is the sensitivity 

vector, iK̂  is the unit illumination vector of the investigated 

point. 0K̂  is the unit observation vector of the investigated 
point, Kn, K are projections of the sensitivity vector on axes n, 
z, l is the distance from the fixed point to the aperture, x is the 
distance from the aperture to the screen, H is the size of the 
bar (plate) on the photograph, γ is the aperture angle, α is the 
central angle between illumination and observation directions 
of the investigated point 

The distance l from the fixed point P to the point 
considered on the bar is determined as 

( ) ( ) γϕαβα
γ

tansincos
tan

+−+
=

Al , (19) 

where 

vAL
HLtg =γ , 

α is the angle between the directions of illumination and 
observation of the reference point P, which is measured 
from the optical holographic train and is constant; ϕ is the 
angle between the plane of the bar (plate) and the straight 
line PPi, which is measured from the optical train of the 
holographic rig and is constant. Using the obtained 
relationships, the angles θ1 and θ2 are expressed, 
respectively, as 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

ϕ
ϕθ

sin
cosarctan1
i

i
PP

lPP , (20) 

22
πϕαγθ −++= .  (21) 

Here, PPi is the distance from the illumination point to 
the reference point Pi  on the reference point p on the bar 
(plate). 

Let us analyse the case when the investigated member 
is a cylinder. 

Consider now the cylinder which axis is located in the 
plane of observation 0K̂  and illumination iK̂  vectors is 
perpendicular to the plane of the observation and 

illumination vectors and meets the plane of observation 

0K̂  and illumination iK̂  vectors at a certain angle.  
Fig. 4 presents the diagram corresponding to the case 

when the axis of the cylinder is located in the plane of 
vectors of observation 0K̂  and illumination iK̂ . The 
investigated point lies on the surface of the cylinder at the 
distance l from the fixed point p. The angle γ can be 
determined from expression : 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

=
vLRA

HLarctanγ , (22) 

where H is the distance from the reference axis to the 
considered point on the image, Ln is the length of the 
image of the cylinder at β=0 (when the cylinder axis is 
parallel to the screen), L and R are length and the radius of 
the cylinder, respectively. 

 

Fig. 4. The interpretation diagram of the holographic measurement of 
the point lying on the surface of the cylinder for the case when 
the cylinder axis is located in the plane of unit vectors of 

illumination iK̂  and observation 0K̂ , rK̂ , zK̂  are 
projections of sensitivity vector on axis r,z respectively, l is the 
axial distance from the investigated point on the cylinder 
surface to the fixed point P, x is the distance from screen to 
aperture, A is the distance from the fixed point to aperture, R 
is the radius of the cylinder, α is the angle between 
illumination and observation directions 

From Fig. 4 we also have: 
( )βϕα −+= tanRl   (23) 

( ) ( )
( ) ( )βαγβα

βαγβα
ϕ

−++
−−+

=
cossincos
cossinsin

AR
AR  (24) 

where PPi is the distance from the fixed point P on the 
cylinder axis to the point of illumination Pt, which is 
determined experimentally from the optical circuit of the 
holographic rig, β is the angle defining the cylinder 
position relative to the observation direction and obtained 
experimentally from the optical train of the holographic 
rig, α is the central angle between the direction of 
observation and illumination, which is constant and is 
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determinable experimentally from the holographic optical 
train.  

The angles θ1, θ2 for this case can be determined from 
expressions: 

( )
( )⎥⎦

⎤
⎢
⎣

⎡
−−

−−
=

βα
βαθ

cos
sinarctan1

i

i
PPR
PPl , (25) 

βγθ +=2   (26) 
Fig. 5 presents the diagram corresponding to the case 

when the axis of the cylinder is perpendicular to the plane 
of the vectors of observation and illumination.  

Here we obtain the following relationships: 

⎥
⎦

⎤
⎢
⎣

⎡
=

vAR
HRarctanγ   (27) 

where H is the distance from the axis of the cylinder to the 
point considered on the photograph, A is the distance from 
the axis of the cylinder to the aperture, R is the radius of 
the cylinder, Ri is the radius of the cylinder on the 
photograph. 

⎟
⎠
⎞

⎜
⎝
⎛+=

R
A γγβ sinarccos , (28) 

( )
( )⎥⎦

⎤
⎢
⎣

⎡
+−

+
=

βα
βα

θ
sin

cos
arctan

t

t
PPR

PP
, (29) 

βπγθ −+=
22 ,  (30) 

 
Fig. 5. The interpretation diagram of the holographic measurement of 

the point lying on the surface of the cylinder for the case when 
the cylinder axis is perpendicular to the plane of unit 

illumination and observation vectors K̂  is the sensitivity 

vector, rK̂ , tK̂  are the projections of sensitivity vectors on 
axis r, t; R is the radius of the cylinder, A is the distance from 
the center of the cylinder P to the aperture, x is the distance 
from aperture D to screen, γ  is the aperture angle 

where PPi is the distance from the point of illumination Pi 
to the center of rotation of the cylinder P, β is the angle 

defining the coordinate of the investigated point on the 
surface, α is the central angle between the directions of 
observation and illumination determinable experimentally 
from the optical holographic train. 

Fig. 5 presents the diagram corresponding to the case 
when the axis of the cylinder meets the plane of vectors of 
observation and illumination at an some angle. In this case, 
the angles ϕ1 and ϕ2 between the cylinder element and the 

vectors of illumination iK̂  and observation 0K̂  are 
determined experimentally. Since the plane of the vectors 
of illumination and observation makes an angle with the 
axis of the cylinder, the intersection of this plane with the 
cylinder forms an ellipse (see Fig. 7). Correlations for the 
determination of angles θ1, θ2 for the given case are given 
below. From Fig. 7 we have: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

v

h
h

AR
RHarctgγ ,  (31) 

where Hh is the distance from the axis of the cylinder to the 
considered point on the photograph; R is the radius 
representing the minor semi-axis of the ellipse b=R; 

 

Fig. 6 The interpretation diagram of the holographic measurement of 
the point lying on the cylinder surface for the case when the 
plane of unit illumination and observation vectors meet the 
cylinder axis at an angle, R is the cylinder radius, y is the 
major semi-axis of the ellipse, b is the minor semi-axis of the 
ellipse, x is the distance from aperture to screen, Hn is the 
position of point M on the photograph 

A is the distance from the axis of the cylinder to the 
aperture, Rn is the radius of the cylinder on the image. 

The angle β defining the position of the investigated 
point on the ellipse can be expressed as: 

ρ
γ

γβ
h

h A sinarccos+= , (32) 

where r is the radius of the investigated point which is 

ββαρ 2222 sincos b+= . (33) 
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Fig. 7. The interpretation diagram for the holographic measurement 
of the point lying on the cylinder surface for the case when 
intersection of the plane of unit vectors of illumination and 
observation with the cylinder axis forms an ellipse: K is the 
sensitivity vectors, Kr, Kz are the projections of sensitivity 

vectors on axis r, t, 1K̂ , 0K̂  are the unit vectors of 
illumination and observation, a is the major semi-axis, b is the 
minor semi-axis, p is the vector of oscillations of the point, A is 
the distance from the cylinder axis to the aperture, x is the 
distance from aperture to screen, Hh is the position of the 
point designated by vector p on the photograph 

Since vR 2cos/ ϑα =  is the major semi-axis of the 
ellipse (θn

2 is the angle between the plane of the drawing 
and the plane perpendicular to the axis of the cylinder), 
then: 

( ) ββθρ 2222
2

2 sincoscos/ RR v +⎥⎦
⎤

⎢⎣
⎡= . (34) 

Then the angles of illumination and observation θ1, θ2 
will be expressed, respectively as: 

( )
( )⎥⎦

⎤
⎢
⎣

⎡
+−

+
=

βαρ
βαθ

sin
cosarctan1

i

i
PP

PP , (35) 

βπγθ −+=
22

h .  (36) 

Here, PPi is the distance from the point Pi of 
illumination to the axis of the cylinder, α is the angle 
between the directions of illumination and observation of 
the point P, which is obtained from the optical holographic 
train. 

Fig. 8 presents the diagram corresponding to the case 
when the investigated member is a sphere. The auxiliary 
angle α is determined by means of interactions from the 
expression: 

( )[ ]⎭
⎬
⎫

⎩
⎨
⎧

−
−

=
2/1

arctan
α

α
tgR

FR

S

S . (37) 

Here, Rs is the radius of the sphere, F is equal to the 
distance CT (see Fig. 8). The angle α has to be calculated 
just once. In order to describe a certain point on the sphere, 
the angle γp is introduced, which is expressed as follows: 

 

Fig. 8. The interpretation diagram of the holographic measurement of 
the point lying on the sphere surface: S is the illumination 

point; K is the observation point, 0
ˆ,ˆ KKi  are the unit vectors 

of illumination and observation, respectively, of investigated 
point, Rs is the radius of the sphere, O is the center of the 
sphere, OR is the distance from the center of the sphere to 
screen, O'T ' is the radius of the sphere on the photograph, RP' 
is the radius of the investigated point on the photograph, α is 
the perspective angle, γ is the aperture angle 

⎥⎦
⎤

⎢⎣
⎡=

2
arctan

D
Rtg

p
αγ .  (38) 

Here, R corresponds in Fig. 8 to the distance 
Q'P',defining the position of the investigated point on the 
photograph of the holographic interferogram, D2 is the 
radius of the sphere on the photograph. It is necessary to 
calculate angle γp for each investigated point which is 
defined by angle θ. For the same point it is necessary to 
calculate angles θ and β from expressions: 

( )[ ]{ } ppSR γγαθ −+= sin1/arcsin , (39) 

θπβ −=
2

.  (40) 

The angles of illumination θ1 and observation θ2 are 
expressed, respectively, as 

( ) ( )[ ]δβδβθ +−+= sin/cosarctan1 OSROS S , (41) 
γθθ +=2 , 

where OS is the distance from the illumination point S to 
the center of the sphere, θ is the central angle between the 
directions of illumination and observation, which is 
determined experimentally from the optical holographic 
train. Thus the obtained relationships allow determination 
of projections of the sensitivity vector directly from the 
holographic interferograms, depending on the optical 
holographic train and the geometrical form of the member 
of a precision mechanism. 

Algorithm of calculation of the 3-D Vibrations at 
any point of the surface 

The relation of the component of the vector of spatial 
vibrations with the optical scheme of the experiment is the 
following (see Eq. 8): 

( )
( )
( ).sincossincos

sinsinsinsin

cos
2

2211

2211

21

ϕθϕθ
ϕθϕθ

ϕϕ
π
λ

++
+−+

++=Ω

W
V

socU

 (42) 
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where l is the wavelength of the laser used to obtain the 
holographic interferogram, θ1, θ2, ϕ1, ϕ2 are the angles of 
illumination and observation that are used when recording 
the interferogram, W is the parameter determined from 
dark interferentional bands at the center of the 
interferogram. 

By taking into account Eq. 42 for the performed m 
measurements we construct the system of equations  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )(
( ) ( ) )

( ) ( ) ( ) ( ) ( )( ),sincossincos
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The components U(i), V(i), W(i) we express in the 
following way [18]: 

( ) ∑=
q

u
ij

u
j

i FAU
1

,       ( ) ∑=
q

v
ij

v
j

i FAV
1

,  

( ) ∑=
q

w
ij

w
j

i FAW
1

,  (44) 

where U(i), V(i) and W(i) are the corresponding tangential 
and normal components of the vector of spatial vibrations 
at the point I, Fij

U
, Fij

V
, Fij

W
 are the corresponding values of 

the amplitudes of vibrations at the point i of the j-th 
eigenmode that are calculated according to the analytical 
expressions. Aj

u, Aj
v, Aj

w are the influence coefficients of 
the j-th eigenmode. 

After substitution of Eq. 44 into Eq. 43 we obtain  
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  (45) 

( ) ( ) ( ) ( )∑ ∑ ∑++
Ω q q q
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w
mj
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j

m
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v
mj

v
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1 1 12π
λ . 

In order to calculate the components of the vector of 
spatial vibrations at any point on the surface of the rigid 
body it is necessary to find the influence coefficients of the 
modes of eigenvibrations Aj

u, Aj
v and Aj

w. For this purpose 
we write the system of equations Eq. 45 in the form 

{ } [ ]{ },AFW =   (46) 
where F is the matrix: 

[ ] ( ) ,, u
ij

i
z FKkiF =  

[ ] ( ) ,, v
ij

i
t FKkqiF =+  

[ ] ( ) w
ij

i
r FKkqiF =+2, , 

( )qkmi ...,2,1;,...2,1 == ; (47) 
W is the column vector of dimension m, 

{ }
( ) ( ) ( )

.
2

,...,
2

,
2

21

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ΩΩΩ

= λ
π

λ
π

λ
π

m
W  (48) 

We solve Eq.46 by the method of least squares, using 
the computer, {W} is found from the holographic 
interferograms, [F] we calculate according to the analytical 
relationships, depending on the geometry and the 
conditions of fastening of the rigid body. 

After the calculation of {A} we use Eq. 46 again. We 
give the coordinates of any point and calculate the value of 
[F]. Because we have already calculated {A}, so after 
substitution of the values of [F] and {A} into Eq. 46 we 
calculate the components of the vector of spatial vibrations 
at any point of the surface. 

The presented method is convenient because having 
several characteristic values of the vector of vibrations of 
the surface that are obtained from the holographic 
interferograms we can calculate the amplitude of the 
vibrations at any point of the surface of the rigid body. 

Uncertainty estimation in process of numerical 
identification from a holographic interference 
pattern 

Analysis of uncertainties occurring in the process of 
numerical identification of spatial parameters of an 
analysed object from its laser holographic interferogram is 
presented in [22]. The specific attention is devoted to the 
numerical identification of the centers of dark interference 
bands. The presented evaluation of a total uncertainty of 
the analysis may help to optimise the identification process 
and to avoid critical mistakes in the procedure for 
calculation of parameters of the analysed object. 

Interpretation of laser holographic interferograms is a 
rather complicated and perplexing procedure, especially if 
the geometry of the analysed object is not evident. There 
are methodologies used for the identification of object 
deformations from the interference band pattern, mainly 
based on the recognition of the centers of interference 
bands [23−26]. Such methodologies give an opportunity to 
calculate general characteristics of spatial deformations 
from time averaged holograms.  

The process of defining the characteristics of the 
dynamical system from its holographic interference pattern 
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is relatively heavily imposed by different sources of errors 
starting from uncertainties reflecting the geometric 
characteristics of the optical scheme, finishing with the 
uncertainties caused by numerical procedures for the 
identification of interference band centers. The process of 
decision making from the holographic patterns thus may be 
consequenced by rather high error levels. The knowledge 
about these errors and their ranges is quite critical in 
applications when the necessary precision level in to be 
maintained. 

The proposed method of spatial deformations 
identification is based on the fact that steady state 
vibrations of a structure may be expressed as a linear 
mixture of natural eigenmodes . Though the calculation of 
weight coefficients of appropriate eigenmodes also serves 
as a new source of errors, such a methodology may help to 
understand the dynamical processes of the analysed object 
in a better way, and thus compensate the uncertainties 
originated from other sources. 

The process of reconstruction of spatial deformations 
vector from laser optic interference hologram is 
schematically shown in Fig. 9. 

Basically it consists of the following stages: 
• Scanning and filtering the image of an optical 

hologram (Block 1). 
• Numerical interpretation of interference bands 

and reconstruction of spatial deformation vector (Block 2). 
• Numerical adjustment of reconstructed spatial 

deformation vector (Block 8). 
The process of reconstruction of spatial vibrations 

yields the occurrence of inaccuracies which are 
appropriately grouped as errors originating from the 
numerical location of centers of interference bands (Block 
3), errors associated with uncertainties of geometrical 
parameters of the optical system (Block 4), and errors from 
the approximation through the natural eigenmodes (Block 
5). All uncertainties are summing up (Block 6) and 
forming the total uncertainty of reconstructed deformation 
vector (Block 7), which must be evaluated while 
constructing the final shape of spatial vibrations (Block 8). 

Further considerations about the total uncertainty of 
the reconstruction require the analysis of every individual 
source of errors.  
 

 

Fig. 9. The schematic diagram of uncertainty estimation in the process of reconstruction of deformation vector from the optical interference 
hologram. 

The reconstruction of spatial object characteristics 
from its interference pattern is based on the identification 
of the centers of dark interference bands [23]. Thus the 
uncertainty of the numerical analysis procedure in 
principle depends on the ability of the software to 
determine the centers of an interference band with a 
predefined accuracy.  

Fig. 3.3.2 present a process of identification of centers 
of interference bands from the measured holograms with 
following numerical reconstruction of bands and statistical 
displacement identification on the surface of the measured 
object.  

It is obvious that the accuracy of determination of 
interference lines in the holograms varies from ±1,0 up to 
± 3,0 mm in the zones where the angle between the 

illumination vector Ki and the normal vector of the surface 
is less than π/4. Thus, the optical phase measurement 
uncertainty δ(∆Ω) ≤ 0,3 rad. It is apparent, that if the angle 
between the illumination vector and the normal vector of 
the surface is turning to become larger, the errors from the 
band identification may be sufficiently larger (Fig. 10 - 
bottom part of the pattern). Of course, one could not expect 
the original hologram to sustain a good picture quality in 
this region. In such a case a poor quality of the original 
hologram cannot lead to perfect results of the numerical 
analysis. 

The evaluation of uncertainties of the geometrical 
parameters of the system requires the definition of the 
mathematical relationships between the illumination and 
sensitivity vectors. The mathematical model of the 
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hologram registration scheme evaluates the position of 
lighting and observation vectors, as well as the position of 
the analysed object itself. Let the illumination vector 
r
Ki and the observation vector 0K

r
be constructed in the co-

ordinate set r, t, z with corresponding angles θ1, ϕ1, ψ1 and 
θ2, ϕ2, ψ2. It is obvious that (see Eq. 6). 

.,...,2,1
,coscoscos

,coscoscos

2220

111

nj
ztrK

ztrK
jjjj

jjjj
i

=

⋅+⋅+⋅=

⋅+⋅+⋅=
rrrr

rrrr

ψϕθ

ψϕθ

 (49) 

 

Fig. 10. Numerical identification. (1) - Scanned and filtered hologram 
of an excited rectangular plate. (2) - Numerical identification 
of maximum and minimum values of illumination. (3) - 
Improved identification of  maximums in the centers of 
interference bands. (4) - Numerical reconstruction of 
interference bands from the co-ordinates of maximums of 
interference bands. 

 
Now Eq. 7 can be expressed in the matrix format: 

{ } [ ] { },
2

RK ⋅=∆Ω
π
λ   (50) 

where 

{ } { }
{ } { },,,

,,, 321
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Under the assumptions that the uncertainties of the 
components of the vibration vector are the same in all three 
directions: 

vWVU δδδδ === ,  
and therefore: 

( ) ( ) ( ) ( )∆Ω=∆Ω=∆Ω=∆Ω δδδδ 321 , (52) 
the phase uncertainty can be expressed from Eq. 51: 

( ) π
λδδ 2

1 ⋅⋅∆Ω≤ −
∆Ω Kv , (53) 

where K−1  is the matrix norm, i.e. the maximum radical 

of eigenvalue of product [ ] [ ]KK T ⋅ . 
From Eq. 53 it is clear that the analysis of uncertainty 

of numerical identification of δ(∆Ω) is necessary in 
addition to errors of geometrical parameters. 

From Eq. 1 − Eq. 3 it can be seen that the phase 
uncertainty δνΘ is dependant from the angles 

jjjjjj
212121 ,,,,, ψψϕϕθθ  and δΘ : 

3

0
1 RKK ⋅⋅⋅Θ

≤
−

Θ

δ
δν , (54) 

where R  denotes the norm of the vector 
r
R , i.e. 
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The typical experimental geometric uncertainty of the 
angles jjjjjj

212121 ,,,,, ψψϕϕθθ is usually not greater than 
±0,004 rad. 

Let us evaluate errors occurring in the process of 
decomposition of motion to natural eigenmodes. From Eq. 
44 it is obvious that the identification of the natural 
eigenmodes X

ijF , and appropriate weighting coefficients 

of the corresponding eigenmodes X
jA  (here 

{ }WVUX ,,∈ , j varies from 1 up to the number of highest 
evaluated eigenmode, may originate quite serious 
uncertainties and impact the total uncertainty of the 
numerical experiment (Fig. 9). Moreover, the precise 
knowledge about the physical object is required for the 
calculation of its eigenshapes. The alternation of boundary 
conditions may change the shapes of natural eigenshapes 
in a radical way.  

Nevertheless, such a methodology may help to identify 
the spatial deformations in case when the quality of the 
optical hologram is poor. In other words, losses in errors 
compensate the damages of the original hologram. 

Fig. 10-(1) presents a scanned and filtered optical time 
averaged hologram of a rectangular plate, laser wave 
length λ = 0,63 µm. It may be noted that the bottom center 
area of the hologram holds a minimum useful information. 
This is mainly due to incorrect illumination vector position 
relatively to the surface of the plate. Numerical 
reconstruction of the centers of interference bands (Figures 
10-(2)-(3)) clearly accents the problem. Straightforward 
identification of the spatial deformations would leave this 
zone undefined.  

The knowledge of the physical properties of the plate 
(all four boundary side walls of the plate are fixed) may 
help to identify the spatial deformations. The equation of 
flexural vibrations of a plate is written in the form [27]: 

( ) 0
112

0
4

2

3
=−+∇

−
fuhuEh

&&ρ
ν

, (55) 

where E is the Young’s modulus, ρ0 is the density of plate 
material, h is the thickness of the plate, ν is the Poisson’s 
ratio, f is the exciting force, u is displacement of the plate. 
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Natural eigenmodes are sought in the form: 
( ) ( ) ( ) ( ) titi eyYxXeyxUtyxU ωω ⋅⋅== ,,, , (56) 

where t is the time, ω is the natural frequency. The 
approximated solution takes the following form: 

( )

( ) ,sin

,sin

⎟
⎠
⎞

⎜
⎝
⎛ ⋅=
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⎠
⎞

⎜
⎝
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y
b

mByY

x
a

nAxX

m

n

π

π

 (57) 

where a, b are the plate dimensions in x and y directions, 
respectively, n, m are the number of half-waves in x and y 
directions. 

The reconstruction of the first natural eigenmodes and 
calculation of appropriate weighting coefficients shows 
that the coefficient A1 tends to unity, rest tending to zero, 
thus the plate’s displacement vector is coinciding with 
motion described by Eq.57 at n = 1, m = 1. 

The uncertainty of such an evaluation δνXY  is highly 
dependent mainly on two factors: the accuracy of band 
identification and the accuracy of eigenmodes calculation. 
The evaluation of the second uncertainty is in its term very 
much dependant on the knowledge about the boundary 
conditions of the object. If the boundary conditions are 
clearly defined (as in the presented example), then  

∆Ω⋅= δνδν 2XY   (58) 
Total uncertainty of identification of spatial vibrations 

can be expressed in the following way: 
XYvvvv δδδδ ++= Θ∆Ω , (59) 

here all three terms of summation are defined earlier. 
The validity of numerical identification of spatial 

vibrations from a holographic interference pattern depends 
on both on the geometrical and numerical uncertainties. An 
estimate of these uncertainties may help to avoid errors in 
interpreting the holographic interferograms. Moreover, 
application of approximation through natural eigenmodes 
helps to identify even those regions of the hologram which 
are not vivid due to technical or geometrical reasons. 

The advantages of such a type of interpretation of 
holographic images may be clearly illustrated by the 
following practical example. The original hologram of a 
vibrating plate with left and right fixed borders (upper and 
bottom edges are free) is presented in Fig. 11. 

 

 
Fig. 11. Interpretation hologram of holographic images. (1) – 

experimental holographic interferogram, (2) – filtered 
hologram, (3) – deformable surface in numerical expression 

The reconstructed motion is of a fifth eigenmode with 
coefficients m = 3, n = 2 (Eq. 57), coefficient A5 = 0,96 
with the uncertainty ±0,053. 

The total uncertainty affecting the process of 
reconstruction of spatial deformation vector from optical 
laser interference hologram has been evaluated. Every 

separate source of uncertainties is considered presenting a 
practical example of reconstruction. A new method of 
approximation based on the eigenshapes of the system is 
presented. The analysis performed may help to get a better 
and more precise knowledge about the investigated 
models. 

Conclusions 

The proposed procedure and algorithm for the analysis 
of holographic interferograms can be used to optimize the 
operation of wave mechanical systems in real structures. 
Method is also applicable to the analysis of holographic 
interferograms of three-dimensional vibrations of 
deformable solids of any geometry of shapes. Presented 
methods allow to do quantitive interpretation of the 
interference patterns in the cases of different types of 
vibrations. Algorithm of calculation of components vector 
sensitivity according can be used for design of an 
automated fringes analysis system. 

A system for holographic interferometry images 
quantitive parameter identification is developed and can be 
useful for the investigation for the links of different shapes. 
An interference bands identification algorithm is coupled with 
the data of geometric parameters of experimental set-up thus 
producing a powerful tool for object identification. 

The total uncertainty affecting the process of 
reconstruction of spatial deformation vector from optical 
laser interference hologram has been evaluated. 

Reconstruction of the interference fringes based on the 
eigenmodes increases accuracyof unwrapping fringes 
compared with the others methods. 
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A. Palevičius 

Suvidurkintų laike holografinių interferogramų trimačių virpesių 
kiekybinio įvertinimo teorija 

Reziume 

Straipsnyje pateikiama metodika kietų deformuojamų kūnų 
paviršiaus virpesio vektoriaus normalinei ir tangentinėms dedamosioms 
apskaičiuoti pagal holografines interferogramas. Nagrinėjami atvejai, kai 
deformuojamas kūnas yra strypas, plokštelė, cilindras arba sfera.  

Pateikta interferogramų analizės teorija leidžia kiekybiškai įvertinti 
harmoniniu dėsniu aprašomas mechanines sistemas, kurių darbas 
pagrįstas grandžių virpėjimu ultragarsinių dažnių juostoje. 
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