
ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

Benchmarking in DSP

M. Genutis, E. Kazanavičius, O.Olsen

Kaunas University of Technology,

DSP Laborotatory*Communication Department, Aalborg University

Introduction

Benchmarking is a way to measure performance of a
computer system. More specifically, benchmark is a program
used to quantitatively evaluate computer hardware and
software resources. To get a better picture of a computer
system, engineers define benchmark suites - sets of
benchmarks. By choosing a suitable benchmark for a system
it is possible to test if it behaves the way we expect. In this
paper we will discuss what has been done in benchmarking
the DSP systems.

A. What Makes DSP Processors Tick?
DSP applications imply differences between DSP and

general-purpose processors. Most DSP applications require
high performance in repetitive, computation- and data-
intensive tasks. Thus, the following architecture features
prevail in DSP processors:
1. Fast Multiply-Accumulate. The multiply-accumulate

operation is useful in algorithms that involve computing
a vector product, such as digital filters, correlation, and
Fourier transforms. The multiply-accumulate operation
(MAC) is usually performed in a single instruction
cycle. To achieve this functionality, DSP processors
include one or more multipliers and accumulators
integrated into the main arithmetic processing unit.

2. Multiple-Access Memory Architecture. It is the ability to
complete several accesses to memory in a single
instruction cycle. This allows the processor to fetch an
instruction while simultaneously fetching operands for a
previous instruction or store the result of the previous
instruction to memory.

3. Specialized Addressing Modes. Efficient handling of
data arrays and other common data types is provided
through dedicated address generation units. Special
addressing modes called circular or modulo addressing
are often supported to simplify the use of data buffers.

4. Specialized Execution Control. Because DSP algorithms
involve repetitive computations in small loops, most
DSP processors provide special support for efficient
looping (zero overhead looping).

5. Peripherals and Input/Output Control. On-chip
peripherals, like analog-to-digital converters, allow for
small, low-cost system designs. Similarly, I/O interfaces
tailored for common peripherals allow simple interfaces
to off-chip I/O devices.

B. Why to Benchmark DSPs?
Why should we benchmark DSPs? First, users need

accurate comparisons of DSP processors. However, as
architectures diversify, it becomes more difficult to compare
them. Simple MIPS, MOPS and other metrics as we will see
further, no longer help. Second, benchmarks help users
answer the following question: does a particular DSP
platform is suitable for user's application? Users need to
know, how fast is the processor, is it suitable for real-time
tasks, how much power it consumes, how easy it is to write
and maintain software, what is the memory usage.

Benchmarking methodologies
In the past benchmarking was performed by DSP

processor vendors such as Texas Instruments, Motorola, and
Analog Devices. Programs chosen to benchmark were
executed on the vendor's platform and execution time was
measured. Later independent benchmarks appeared, such as
BDTIMark, EDN Benchmarks, DSPStone.

A DSP system consists of a processor, a compiler and a
DSP application. Thus, we can distinguish the following
components that can be benchmarked:

1. Processor
2. Compiler
3. Platform (Processor and Compiler)

C. Benchmarking the Processor
Since we're benchmarking the processor alone, we

cannot use the compiler (if we use compiler-generated code,
we’re measuring compiler performance too). The benchmark
must be written in assembly language.

D. Benchmarking the Compiler
Benchmarking DSP processors involves benchmarking

the compiler as well. Compiler converts high-level language
source code into assembly code. Thus, performance of the
benchmark depends upon the quality of the compiler.
Unfortunately, it's still a lot to be expected from DSP
compilers. DSP developers tend to write a lot of assembly
code. Thus, DSP software tends to be non-portable and
hardly maintainable.

To evaluate compiler efficiency, a reference method was
suggested[13]. According to that method, a benchmark
program is compiled. Cycle count and memory usage are
measured. Then the compiler-generated assembly code is

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

compared with hand-made code. This comparison tells us
how effective the compiler is in using the hardware.

E. Benchmarking the Platform
Platform benchmarks are written in a high level

programming language and measure the performance of both
the compiler and processor.

F. Benchmarking Approaches
The following approaches are used to benchmark DSPs:
1. Metrics (MIPS, MOPS, MFLOPS, etc)
2. Complete DSP Applications (v.90 modem, GSM-

EFR transcoder, Viterbi encoder/decoder)
3. DSP algorithm kernels (FIR filter, FFT)

Let's look at the pros and cons of each of the above
approaches.
1) Metrics

MIPS and MFLOPS are frequently used, but are they
meaningful? Metrics approach is widely criticized in
literature [2], [5], [10], [13]. Metrics lost significance when
RISC architectures were introduced. It’s not worth counting
instructions executed during a period of time since different
processors accomplish different amount of job with a single
instruction. Metrics followers should precisely define what
they mean by instruction or operation. Metrics cover
quantitative issues and they don't evaluate architectural
features of processors.
2) Complete DSP Applications

These are real-world working DSP applications such as
v.90 modem, GSM-EFR transcoder, Viterbi
encoder/decoder. Usually they consist of several thousands
lines of C source code. They require assembly hand
optimizations. It's expensive to create such a benchmark - it
consumes a lot of time and efforts. Such a benchmark
measures whole system, not only the processor. Since the
application consumes a lot of program memory, memory
system and peripherals are tested as well.
3) DSP Algorithm Kernels

They are code fragments extracted from real DSP
programs. Kernels are believed to be responsible for most of
the execution time. They have small code size and long
execution time. They consist of small loops which perform
number crunching, bit processing etc. A few examples of
kernels:

1. Matrix product
2. Convolution
3. FIR, IIR, LMS filters
4. FFT

G. What to Measure?
The following parameters are usually measured when

benchmarking DSPs:
1. Cycle Count
2. Program Memory Usage
3. Data Memory Usage
4. Program execution time
5. Power consumption

6. Cache hit/miss ratio (if the cache exists)
They are sufficient to compare DSP processors from the

user's point of view. If the user needs speed, then cycle count
and program execution time matters. If user programs are
large and access memory a lot, then program and data
memory usage must be taken into account. Power
consumption is important in small widgets that incorporate
DSP chips. If the system has hard real-time constraints, then
cache hit/miss ratio measurements are relevant.

H. How to Measure: Use of Geometric Mean
Suppose initially that we want to average 5.2, 6.3, and

4.7. The arithmetic mean is (5.2 + 6.3 + 4.7) / 3 = 5.4. The
geometric mean is 36.5153.974.7 * 6.3 * 5.2 33 == .

Now suppose some dubious optimizations are performed
on one of the tests, so that the third result becomes, say 19.7.
The arithmetic mean is now (5.2 + 6.3 + 19.7) / 3 = 10.4.
However, the geometric mean becomes

64.8645.3719.7 * 6.3 * 5.2 33 == . Using the
arithmetic claim, we can claim to have almost doubled
performance from 5.36 to 10.4, but what we really did was
drastically improve the result for just one test and leave the
rest unchanged.

Thus, if we want the final figure to reflect overall
improvement, the geometric mean is a better measure; it's
less sensitive to changes in just one component of the results.
This fact makes the geometric mean useful for combining the
results of several benchmarks.

On the road to deliver unbiased benchmarks
About 13 years ago we didn't have DSP benchmarking

authorities. General purpose benchmarks were used to
benchmark DSPs. Companies had to manipulate benchmark
results to get on top. DSP world needed unbiased and
meaningful benchmarks. Because of the lack of other
benchmarks, designers, vendors and analysts relied on
Dhrystone MIPS for a microprocessor's performance results.
MIPS is a synthetic and extremely abused benchmark. When
a vendor presents it's processor's MIPS, you can always
assume that the vendor performed the test under the best
conditions for their particular processor.

We must face the fact that it's difficult to design a
benchmark for a processor in the context of an embedded
application. The difficulty stems from the fact that one
benchmark cannot effectively represent the variety of
embedded applications.

In 1988 EDN standardized some common benchmarks,
compiled and analyzed the resulting data on 18 DSPs and 12
benchmarks. Benchmarks were implemented in assembly
language and were a good start in benchmarking DSP
processors. This came as a result of 1981 EDN benchmark
survey.

In 1993 university DSPStone project came up with
valuable results on evaluating DSP compiler performance. C
compiler generated code was compared with hand-coded

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

assembly code. Speed and memory usage overhead were
measured. Results showed that DSP compilers are still in an
infant stage - DSP developers prefer writing applications in
assembly.

In 1997 EDN Embedded Microprocessor Benchmark
Consortium (EEMBC) was established. Its primary goal was
to develop real-world benchmarks with precise rules for
reporting. Unbiased benchmark tests are EEMBC's mission.
21 competing microprocessor companies took part in
establishing EEMBC (now there are 28). Tool vendors and
developers are excluded from EEMBC membership.

At about the same time as EEMBC, BDTIMark
benchmark suite appeared. Its main purpose is to measure
DSP processor execution speed. That's why their
benchmarks are written in assembly language.

Dhrystone benchmarks
In 1984, Dhrystone benchmark authors wrote the initial

1.0 version in Ada and have subsequently updated the
benchmark. Later the benchmark was converted to C. The
most recent 2.1 version is free and can be downloaded via
the Internet. Dhrystone program performs no directly useful
action. Instead, it belongs to synthetic benchmarks -- code
with particular behavioral characteristics rather than
programs that implement algorithms.

Version 2.1 of Dhrystone contains 103 high-level
statements within the main loop, which executes repeatedly
during a benchmark run. User chooses the number of
iterations at runtime. At the end of the benchmark run,
Dhrystone prints the absolute time required per iteration; the
number of iterations per second through the main loop; and
the performance, measured in iterations per second, relative
to a baseline machine. The baseline machine is DEC VAX
11/780, which was in wide use when authors created the
benchmark.

The first major limitation of Dhrystone is its size:
because it is small, it's easy to work with. When authors
created Dhrystone, caches for instructions or data were a
rarity in embedded system design. Since then, caches have
become commonplace. Dhrystone's strong locality allows
caching to significantly boost performance on the
benchmark. Even a small cache can contain most or all of the
information that each iteration uses.

The second major limitation of Dhrystone arises from its
execution profile, which is the proportion of overall
execution time it spends in each function. A program in
which each function makes roughly the same contribution to
the total has a ``flat'' profile. In contrast, a program for which
just a few functions account for a significant proportion of
overall execution time has a ``sharp'' profile.

On most embedded CPU architectures, Dhrystone's
profile is sharp, and it spends as much as 30 to 40% of its
execution time in just two functions: strcpy and strcmp.
Dhrystone performs rather specialized and more intense
string handling than that found in many embedded system
workloads. If user's embedded firmware does little

specialized sting handling, Dhrystone results could be
inaccurate.

Various other criticisms of Dhrystone include the
argument that synthetic nature doesn't resemble real-world
DSP applications. For example, Dhrystone has an unusually
low number of instructions per procedure call and is
therefore oversensitive to the implementation efficiency of
procedure calls and returns.

Similarly, Dhrystone's call sequences are nested only
three or four levels deep. Thus, most register-window RISC
machines would never spill or fill their register windows and
thus would never need to save or restore registers from off-
chip memory.

All these lines of argument essentially proceed towards
the same conclusion: the small and portable Dhrystone
benchmark doesn't use the CPU in the same way as a large,
complex piece of embedded software does.

EDN’s DSP benchmarks
This suite came out in 1988. 12 common benchmarks

were run on 18 DSPs. DSP users were surveyed about their
applications and DSP manufacturers were asked about their
own benchmarks. Benchmark suite resulted in a collection of
kernel benchmarks, fragments of code taken from real-world
applications: FIR, IIR filters, FFT, dot product, and matrix
multiplications.

EDN specifically defined the execution time and
memory for the participating manufacturers as follows [11]:

“The execution time is the time it takes to execute the
given benchmark. This does not include the time it takes to
initialize the system or create lookup tables. It does include
the time to initialize those items (registers, pointers, etc) that
are required each time the routine is run.”

“The total memory required is the total number of words
that the program requires. This includes executable code,
initialization code, filter coefficients, delay data, twiddle
factors, bit-reversal lookup tables, and any other item that
consumes some of the available memory resources of the
DSP.”

One of conclusions was that speed isn't the most
important factor. If DSP is used mostly for filter
applications, the speed at which a DSP can execute FFT is
probably irrelevant. There were no winners in this survey,
however, DSP evaluation process was enlightened.

EEMBC benchmarks
EEMBC was established in 1997. The benchmarks

consist of suites of tests written in C. They encompass
applications in the automotive/industrial, consumer,
networking, office-automation, and telecommunication
industries. Within each suite, individual tests measure one or
more processor functions, allowing to determine which
functions are appropriate for the application. For each test,
vendors must report runtime characteristics that include
compiler versions and switches, processor clock and bus
speed, wait states and cache size. Furthermore, the vendor

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

must clearly document any code changes that were
implemented to improve the benchmark performance; this
documentation ensures that the exact test is repeatable and
unbiased.

EEMBC strategy is to extract processor-intensive code
segments of the most popular embedded applications, i.e.
DSP kernel benchmarks are used. EEMBC benchmarks lie in
between synthetic and real world based benchmarks.

If the code of the benchmark fits into the cache, it
doesn't test the processor's external bus structure. To resolve
this drawback, EEMBC studied how its benchmark programs
behave within the context of the application. In some cases,
an algorithm apparently runs repeatedly, but not
continuously, during the operation of the application.
Therefore, depending on a processor's cache size or on
whether you use cache locking, the processor would
repeatedly have to reload the algorithm into its cache. When
appropriate, EEMBC wrapped “cache-thrashing”' code
around the benchmark algorithm to simulate the real-world
effect and exercise a processor's bus interface unit as it loads
code and data from external memory into the on-chip cache.

BDTIMARK – a DSP benchmark suite
BDTI is a consulting company that specializes in

independent analysis of DSP technology. Their benchmark
suite compares the speed of DSP processors. Benchmarks
are written in assembly language to avoid compiler
interference in benchmark results.

Writing a complete DSP application in assembly is time
consuming. That's why BDTI adopted an algorithm kernel
model. BDTI benchmarks comprise 11 DSP algorithm
kernels that have been selected from those most commonly
used, including FIR and IIR filters, an LMS filter, a
convolutional encoder, and an FFT. Benchmark algorithms
are programmed in assembly and carefully hand-optimized
to make full use of processor's potential.

The BDTIMark is an overall speed metric that distills
processor's execution time results on all 11 BDTI
benchmarks into a single number. However, this approach
hides the relative importance of each routine for a particular
application. BDTI correctly points out that proper use
depends on profiling an application to assign appropriate
weights. However, the single number that they publish
simply distills results using uniform weighting.

Benchmark routines rely on the chip's native data
format. That is, a 16-bit fixed-point chip could end up with
the same, or better, ranking than a much higher-end floating-
point chip.

Performance in DSP applications is very important, but
reality dictates other concerns such as chip and system cost,
power consumption, memory usage and so forth. BDTIMark
doesn't take this into account. BDTI results show that
general-purpose processors can work as fast as DSP
processors. But why to use DSPs then? Thus, benchmark
results alone obscure practical reasons for choosing a DSP
processor.

DSPSTONE benchmarking methodology
The purpose of the DSPStone project was to benchmark

DSP compiler performance and efficiency. If DSP
application developers decide to write software in C, they
want to know, what will be the speed/memory overhead.
DSPStone results can be used to find reasons in relative
inefficiency of DSP compilers as well as possible ways to
improve their performance.

DSPStone covers over 30 benchmark programs,
organized into three benchmark suites (application, DSP-
kernel and C-kernel). In order to measure results, a new,
DSP-oriented benchmarking methodology is introduced [4].
It is based on the reference-code method where the metric
distance between the hand-written assembly code and the
assembly code generated by the compiler is measured.

The introduced methodology is applied on a set of five
commercial DSP C compilers (Analog Devices 21xx,
AT\&T 16xx, Motorola 56xxx, NEC 770xx and TI 320C5x).

The results show that a lot of work has to be invested
into DSP compiler development in order to make them
useful, not only for rapid prototyping, but also for production
quality programming.

Conclusions

Users want to know if a particular processor is suitable
for their application. Also, it is good to know which
processors are the best up to day. Benchmarking these
processors is a way to do it. Since DSP processors differ
from general-purpose counterparts, it is good to have a DSP-
oriented benchmarking methodology.

DSP benchmarks usually are one of the following:
complete DSP applications, DSP algorithm kernels or
synthetic code segments. They are written either in C or
assembly, or both of them. Writing in assembly takes more
time and efforts. The advantage is that compiler influence is
excluded.

Parameters usually measured are: execution time,
memory usage, cycle count, power consumption. Often
benchmark results are summarized as a single number (for
example, BDTIMark).

DSP user community agrees that MIPS or Dhrystone
benchmarks are no longer a reliable source to judge
processors. DSP user community needs an independent DSP
benchmarking authority. Now we have at least two of them:
EEMBC and BDTI. Their reports can be relied on when
choosing a DSP processor.

This work was done Aalborg University.

References

1. Cantrell Tom. Yet Another Benchmark? Embedded Systems, 2000.
2. Thomas M. Comte and Wen mei W. Hwu. Benchmark

Characterization. IEEE Computer. 1991. P. 48-56.
3. Eyre Jennifer. DSP Benchmarking Methodologies. Computer Design,

March 1998.

ISSN 1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

4. Institute for Integrated Systems in Signal Processing. DSPStone: A
DSP-Oriented Benchmarking Methodology. Technical report, Aachen
University of Technology, 1994.

5. Lapsley Phil, Bier Jeff, Shoham, Amit and Lee Edward A. DSP
Processor Fundamentals: Architectures and Features. IEEE Press, 1996.

6. Levy Marcus. EEMBC: on the Road to Delivering Unbiased
Benchmarks. EDN Magazine. December 1997.

7. Levy Marcus. At Last: Benchmarks You Can Believe. EDN Magazine.
May 1998.

8. Levy Marcus. A Peak Behind the Scenes at EEMBC. EDN Magazine.
May 1999.

9. Mann Daniel. When Dhrystone Leaves You High and Dry. EDN
Magazine. May 1998.

10. Walter J. Price. A Benchmark Tutorial. IEEE MICRO. 1989. P. 28-41.
11. Shear David. EDN’s DSP Benchmarks. EDN. September 1988. P.126-

134.
12. Weicker Reinhold P. An Overview of Common Benchmarks. IEEE.

1990. P. 65-75.

13. Zivojnovic Vojin, Velarde Juan Martinez, Schlager Christian and
Meyr Heinrich. DSPStone: A DSP-Oriented Benchmarking
Methodology. In Proceedings of International Conference on Signal
Processing: Applications and Technology ’94 – Dallas, 1994.

M. Genutis, E. Kazanavičius, O. Olsen

DSP efektyvumo matavimai

Reziumė

Darbo tikslas – apžvelgti įvairius diskretinių signalų procesorių (DSP)
efektyvumo nustatymo metodus.

Darbe aptariami DSP efektyvumo kriterijai, metodų skirtumai, parodyta
matavimų svarba, realizuojant DSP algoritmus įvairiuose procesoriuose.

Darbas atliktas bendradarbiaujant su Danijos Aalborgo universitetu.

Pateikta spaudai 2001 04 23

