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Introduction 

Procedures for plotting computer generated moire 
mechanical interference bands (moire fringes) from the 
results of finite element analysis can provide meaningful 
information about the processes taking place in the analysed 
structures. Such visualisation is important from the point of 
view of interpretation of experimental results [2], [8] and 
enables calculation of structural stresses with sufficient 
accuracy [1], [9]. Computer generated moire fringes 
produced from the overlap of two repetitive patterns can give 
realistic view of the structural deformations. Moreover, the 
digital plotting procedures of moire fringes can be also 
effectively applied for the visualisation of periodic dynamic 
processes if the structure is stroboscopically photographed in 
the states of equilibrium and the states of extreme 
displacements.  

Numerical generation of realistic fringe patterns requires 
non-trivial computer code implementations. The sufficient 
smoothness of the interfering grids must be considered. That 
requires the utilisation of multiple intensity levels and 
incorporation of 3D graphical models. On the other side, the 
discrete FEM results must be interpolated over the domain of 
the structure. Visualisation of small deformations around the 
state of equilibrium without exaggerating the nodal 
displacements also requires appropriate adaptations.  

The commonly used repetitive patterns for the 
generation of moire fringes are interference grids formed 
from arrays of parallel straight lines. Application of such 
grids for the three dimensional shell type structures faces 
quite severe complications due to the variable thickness of 
the lines.  

Therefore the numerical procedures generating realistic 
moire fringe patterns for different structural geometries are 
important and useful tools for visualisation of numerical 
analysis data and interpretation of experimental results.  

Construction of moire fringe patterns for two 
dimensional problems 

It is assumed that FEM analysis is based on the linear 
theory of elasticity. Therefore, if the nodal deformations (or 
amplitudes of harmonic oscillation used for stroboscopic 
analysis) in the direction of the x and y axes are defined as u 
and v it is possible to find the original locations of points in 
the state of equilibrium, when their positions in the deformed 

structure are defined. If the coordinates of a point on the 
deformed surface are (α, β), then this point in the state of 
equilibrium has the coordinates (α − u, β − v). This 
reconstruction may be performed for any interpolated point 
on the analysed surface. Such a methodology enables the 
preservation of the optical shape of the structure and 
eliminates the need for exaggerating small deformations 
around the status of equilibrium.  

In order to obtain better interpretable moire fringes the 
smooth variation of the intensity of the fringes on the surface 
of the object is proposed. It is assumed that the intensity 
varies according to the harmonic law. The intensities of lines 
on the object in the state of equilibrium correspond to the 
first term in the following expressions, the other term 
corresponds to the deformed status of the structure: 
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where λ is the constant defining the distance between the 
grid lines, I stands for a intensity level, (1) represents the 
isothethes of u, (2) represents the isothethes of v.  

The concept of isothethes is used in the description of 
moire fringes in [1] and concerns the image obtained by the 
overlapping of the image of the lines on the structure in 
equilibrium and in the deformed status.  

Two maps must be built separately for identifying moire 
fringes in appropriate directions. The direction of the parallel 
grid lines can be varied by elementary rotations of the 
structure.  

It can be noted, that the interpretation of moire 
isothethes is not trivial. Fig. 1 shows the geometry of the 
structure in equilibrium (grey lines) and the third eigenmode 
(dark solid lines) of a rectangular plate with fastened lower 
edge. It is assumed that the displacements in both directions 
on the lower edge of the plate in the state of plain stress are 
equal to zero, elsewhere the structure is free. 

The external excitation is not stated explicitly and is 
assumed to be harmonic with the resonant frequency of this 
eigenmode and is not orthogonal to it. Thus it is possible to 
excite  this  only  mode  (assuming  it  is not  multiple)  with  
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Fig. 1. The geometry and the third eigenmode of the plate 

 

 
 
Fig. 2. Generated moire fringes for the displacement in the direction of 

the x axis 

 

Fig. 3. Generated moire fringes for the displacement in the direction of 
the y axis 

negligible contribution of the other modes, and to analyse its 
steady state motion by using stroboscopic photographing. 
The nodal displacements are exaggerated with respect to the 
dimensions of the structure, the mesh is quite coarse.  

The constructed moire fringe patterns in two planar 
directions are presented in Fig. 2 and Fig. 3.  

Isolines represent the lines on the surface of the structure 
on which the analysed quantity takes  constant values. The 
density of isolines indicates the rapidity of change of the 
represented quantity. The presented methodology enables 
generation of smooth moire patterns from relatively rough 
FEM approximation.  

Moire fringes for three dimensional shell type 
structures 

The amplitudes of harmonic oscillations used for 
stroboscopic analysis in the directions of the x, y and z axes  
are defined as u, v and w. If the coordinates of a point on the 
deformed surface are (α, β, γ), then this point in the state of 
equilibrium has the coordinates (α − u, β − v, γ - w).  

Isolines of displacements in both directions are 
constructed to validate the formation of isothethes (Fig. 4 
and Fig. 5). 

The intensities are calculated on the basis of (1), (2) and 
the following relationship: 
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where the latter equation represents the isothethes of w.  
The element used is similar to the described in [4], but 

involves the transformation of rotations to the tangential 
direction similarly to [5]. The nodal variables are the 
displacements in the directions of the axes of coordinates u, 
v, w and the rotations in the tangential directions Θr, Θt.. 
Here the subscripts indicate the tangential directions.  

The derivatives of the coordinates x, y, z in the directions 
of the local axes ξ, η are: 
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where xi, yi, zi are the coordinates of the i-th node, Ni − the    
i-th shape function of the finite element; the subscripts ξ, η 
denote partial derivatives with respect to the local 
coordinates. 

The matrix of the direction cosines at the point of 
integration is: 
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Fig. 4. The isolines of the displacement in the direction of the x axis 

 

 
 

Fig. 5. The isolines of the displacement in the direction of the y axis 
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where {r}, {t} and {p} form the orthonormal base on the 
middle surface of the shell element. {r} and {t} are 
tangential to the surface, {p} is normal to it. 

The Jacobian of the change of the variables of 
differentiation is calculated as: 
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The change of the variables of differentiation is 

performed on the basis of the equations: 
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The rotations about the directions of the axes of 

coordinates Θx, Θy, Θz are related with the tangential 
rotations as: 
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The following matrixes are formed: 
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at node i. 
The interpolated variables are transformed to the local 

directions {r}, {t} and {p}: 
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In the following formulas the numerical subscript 
denotes the row number of the previous matrixes. 

The stiffness matrix is calculated as: 
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where E is the modulus of elasticity; ν is the Poisson’s ratio; 
h is the thickness of the shell; k is the shear correction factor 
in order to account for the actual distribution of the shear 
stresses assumed to be equal to 1,2. 

The mass matrix is calculated as: 
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where ρ  is the density of the material of the shell. 

In the calculations an element of the non-moment shell 
similar to the one described in [4] with only three degrees of 
freedom per node was also used. 

Fig. 6 shows the second eigenmode of a shell type 
cylinder with clamped edges. The constructed moire fringe 
patterns in the three directions of the coordinate axes are 
presented in Fig. 7, Fig. 8 and Fig. 9.  

Isolines of displacements in those directions are 
constructed to validate the formation of isothethes (Fig. 10, 
Fig. 11 and Fig. 12).  

Conclusions 
Plotting of moire fringes from the results of finite 

element calculations is important because of the ability of 
direct comparisons with the experimental results of analysis. 
The smooth variation of the intensity of the lines on the 
surface of the structure according to the trigonometric law is 
proposed. The method is applied to the visualisation of the 
three dimensional vibrations of shell type structures by 
stroboscopic photographing of the structure in the state of 
equilibrium and in the state of extreme deflections. 

The thickness of the lines on the surface of the three 
dimensional  structure  is  not  necessarily  constant.   So  the  
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Fig. 6. The second eigenmode of the cylindrical shell 

 

 
 

Fig. 7. Moire fringes for the displacement in the direction of x axis 

 

 
 

Fig. 8. Moire fringes for the displacement in the direction of y axis 

 

 
 

Fig. 9. Moire fringes for the displacement in the direction of z axis 
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Fig. 10. Izolines of the displacement in the direction of x axis 

 
 

Fig. 11. .Izolines for the displacement in the direction of y axis 

 

 
 

Fig. 12. Izolines for the displacement in the direction of z axis 

 
application of the method to such problems is more difficult 
than to the two dimensional ones, but the results obtained 
numerically show interpretable moire patterns.   

The procedure of numerical formation of moire fringes 
can be applied in the process of planning of experimental 
investigation enabling the selection of optimal spacing 
between the lines. Another useful application of the 
numerical method is the identification of the structural 
parameters when comparison between optical and simulated 
patterns can help to detect such physical values like the 
modulus of elasticity. 
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M. Ragulskis, L.Ragulskis 

Moire juostų formavimas aukštuoju dažniu virpančioms kevalinėms 
struktūroms 

Reziumė 

Sujungiant skaičiavimo rezultatus su baigtinių elementų metodo 
dinaminės analizės rezultatais, sukurtos Moire interferencinės juostos kevalo 
tipo struktūroms. Naudojama kintamo pločio interferencinė gardelė, kuriai 
reikia atitinkamai modifikuoti skaitines procedūras. 
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