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Introduction

Procedures for plotting computer generated moire
mechanical interference bands (moire fringes) from the
results of finite element analysis can provide meaningful
information about the processes taking place in the analysed
structures. Such visualisation is important from the point of
view of interpretation of experimental results [2], [8] and
enables calculation of structural stresses with sufficient
accuracy [1], [9]. Computer generated moire fringes
produced from the overlap of two repetitive patterns can give
realistic view of the structural deformations. Moreover, the
digital plotting procedures of moire fringes can be also
effectively applied for the visualisation of periodic dynamic
processes if the structure is stroboscopically photographed in
the states of equilibrium and the states of extreme
displacements.

Numerical generation of realistic fringe patterns requires
non-trivial computer code implementations. The sufficient
smoothness of the interfering grids must be considered. That
requires the utilisation of multiple intensity levels and
incorporation of 3D graphical models. On the other side, the
discrete FEM results must be interpolated over the domain of
the structure. Visualisation of small deformations around the
state of equilibrium without exaggerating the nodal
displacements also requires appropriate adaptations.

The commonly used repetitive patterns for the
generation of moire fringes are interference grids formed
from arrays of parallel straight lines. Application of such
grids for the three dimensional shell type structures faces
quite severe complications due to the variable thickness of
the lines.

Therefore the numerical procedures generating realistic
moire fringe patterns for different structural geometries are
important and useful tools for visualisation of numerical
analysis data and interpretation of experimental results.

Construction of moire fringe patterns for two
dimensional problems

It is assumed that FEM analysis is based on the linear
theory of elasticity. Therefore, if the nodal deformations (or
amplitudes of harmonic oscillation used for stroboscopic
analysis) in the direction of the x and y axes are defined as u
and v it is possible to find the original locations of points in
the state of equilibrium, when their positions in the deformed

structure are defined. If the coordinates of a point on the
deformed surface are (o, f), then this point in the state of
equilibrium has the coordinates (¢ — u, f — v). This
reconstruction may be performed for any interpolated point
on the analysed surface. Such a methodology enables the
preservation of the optical shape of the structure and
eliminates the need for exaggerating small deformations
around the status of equilibrium.

In order to obtain better interpretable moire fringes the
smooth variation of the intensity of the fringes on the surface
of the object is proposed. It is assumed that the intensity
varies according to the harmonic law. The intensities of lines
on the object in the state of equilibrium correspond to the
first term in the following expressions, the other term
corresponds to the deformed status of the structure:
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where A is the constant defining the distance between the
grid lines, [ stands for a intensity level, (1) represents the
isothethes of u, (2) represents the isothethes of v.

The concept of isothethes is used in the description of
moire fringes in [1] and concerns the image obtained by the
overlapping of the image of the lines on the structure in
equilibrium and in the deformed status.

Two maps must be built separately for identifying moire
fringes in appropriate directions. The direction of the parallel
grid lines can be varied by elementary rotations of the
structure.

It can be noted, that the interpretation of moire
isothethes is not trivial. Fig. 1 shows the geometry of the
structure in equilibrium (grey lines) and the third eigenmode
(dark solid lines) of a rectangular plate with fastened lower
edge. It is assumed that the displacements in both directions
on the lower edge of the plate in the state of plain stress are
equal to zero, elsewhere the structure is free.

The external excitation is not stated explicitly and is
assumed to be harmonic with the resonant frequency of this
eigenmode and is not orthogonal to it. Thus it is possible to
excite this only mode (assuming it is not multiple) with



Fig. 1. The geometry and the third eigenmode of the plate
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Fig. 2. Generated moire fringes for the displacement in the direction of
the X axis

Fig. 3. Generated moire fringes for the displacement in the direction of
the y axis
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negligible contribution of the other modes, and to analyse its
steady state motion by using stroboscopic photographing.
The nodal displacements are exaggerated with respect to the
dimensions of the structure, the mesh is quite coarse.

The constructed moire fringe patterns in two planar
directions are presented in Fig. 2 and Fig. 3.

Isolines represent the lines on the surface of the structure
on which the analysed quantity takes constant values. The
density of isolines indicates the rapidity of change of the
represented quantity. The presented methodology enables
generation of smooth moire patterns from relatively rough
FEM approximation.

Moire fringes for three dimensional shell type
structures

The amplitudes of harmonic oscillations used for
stroboscopic analysis in the directions of the x, y and z axes
are defined as u, v and w. If the coordinates of a point on the
deformed surface are (o, £ 7), then this point in the state of
equilibrium has the coordinates (& —u, S —v, y- w).

Isolines of displacements in both directions are
constructed to validate the formation of isothethes (Fig. 4
and Fig. 5).

The intensities are calculated on the basis of (1), (2) and
the following relationship:
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where the latter equation represents the isothethes of w.

The element used is similar to the described in [4], but
involves the transformation of rotations to the tangential
direction similarly to [5]. The nodal variables are the
displacements in the directions of the axes of coordinates u,
v, w and the rotations in the tangential directions 6©),, 6.
Here the subscripts indicate the tangential directions.

The derivatives of the coordinates x, y, z in the directions
of the local axes & 7 are:
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where x; y; z; are the coordinates of the i-th node, N; — the
i-th shape function of the finite element; the subscripts &, 7
denote partial derivatives with respect to the local
coordinates.

The matrix of the direction cosines at the point of
integration is:
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Fig. 4. The isolines of the displacement in the direction of the X axis
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Fig. 5. The isolines of the displacement in the direction of the y axis
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where {r}, {¢t} and {p} form the orthonormal base on the
middle surface of the shell element. {r} and {¢} are
tangential to the surface, {p} is normal to it.

The Jacobian of the change of the variables of
differentiation is calculated as:
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The change of the variables of differentiation is
performed on the basis of the equations:
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The rotations about the directions of the axes of

coordinates &,, 6, @. are related with the tangential
rotations as:
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The following matrixes are formed:
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where <7, o and 37,; ¢+ are tangential orthonormal vectors
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at node i.
The interpolated variables are transformed to the local

directions {r}, {¢} and {p}:

(13)

In the following formulas the numerical subscript
denotes the row number of the previous matrixes.
The stiffness matrix is calculated as:
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where E is the modulus of elasticity; v is the Poisson’s ratio;
h is the thickness of the shell; & is the shear correction factor
in order to account for the actual distribution of the shear
stresses assumed to be equal to 1,2.

The mass matrix is calculated as:

[N*]T ph[N*]+
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where p is the density of the material of the shell.

In the calculations an element of the non-moment shell
similar to the one described in [4] with only three degrees of
freedom per node was also used.

Fig. 6 shows the second eigenmode of a shell type
cylinder with clamped edges. The constructed moire fringe
patterns in the three directions of the coordinate axes are
presented in Fig. 7, Fig. 8 and Fig. 9.

Isolines of displacements in those directions are
constructed to validate the formation of isothethes (Fig. 10,
Fig. 11 and Fig. 12).

Conclusions

Plotting of moire fringes from the results of finite
element calculations is important because of the ability of
direct comparisons with the experimental results of analysis.
The smooth variation of the intensity of the lines on the
surface of the structure according to the trigonometric law is
proposed. The method is applied to the visualisation of the
three dimensional vibrations of shell type structures by
stroboscopic photographing of the structure in the state of
equilibrium and in the state of extreme deflections.

The thickness of the lines on the surface of the three
dimensional structure is not necessarily constant. So the
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Fig. 6. The second eigenmode of the cylindrical shell
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Fig. 7. Moire fringes for the displacement in the direction of X axis
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Fig. 9. Moire fringes for the displacement in the direction of z axis



il
,'E‘,"w%]j”ﬁ

[!l. sl

Fig. 11. .Izolines for the displacement in the direction of y axis

12

ISSN 1392-2114 ULTRAGARSAS, Nr.1(42). 2002.

Fig. 12. Izolines for the displacement in the direction of z axis

application of the method to such problems is more difficult
than to the two dimensional ones, but the results obtained
numerically show interpretable moire patterns.

The procedure of numerical formation of moire fringes
can be applied in the process of planning of experimental
investigation enabling the selection of optimal spacing
between the lines. Another useful application of the
numerical method is the identification of the structural
parameters when comparison between optical and simulated
patterns can help to detect such physical values like the
modulus of elasticity.
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Moire juosty formavimas auk$tuoju daZniu virpanc¢ioms kevalinéms
struktiiroms

Reziumé

Sujungiant skai¢iavimo rezultatus su baigtiniy elementy metodo
dinaminés analizés rezultatais, sukurtos Moire interferencinés juostos kevalo
tipo struktiiroms. Naudojama kintamo plo¢io interferenciné gardelé, kuriai
reikia atitinkamai modifikuoti skaitines procediras.
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