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Introduction 

The problem of vibro-transportation of fluids is 
important in the process of design of various engineering 
devices and optimization of processes of transportation [1, 
2, 4]. The effect of longitudinal vibrations of boundary to 
the flow of non-Newtonian fluid was analyzed in [1]. In 
practice the generation of one-directional vibrations is 
quite complicated therefore it is important to define the 
dynamical effects of transverse vibrations to the flow of 
substances. 

The results obtained in [1] provide the basis for the 
design of vibrotransportation devices, but in many 
practical applications vibrotransportation is performed not 
by longitudinal, but by transverse vibrations. It is 
understood that for the full analysis of such problems three 
dimensional models are required. But the analysis of such 
models and the interpretations of the results would be quite 
complicated. In this paper a two dimensional model with 
some similarities to the one presented in [1] is developed. 
The main feature of the model is that the vibrational 
excitation is performed through the boundary velocities, 
which are given in the convective acceleration terms of the 
equation of dynamic equilibrium. The prescribed velocities 
are assumed constant in the cross section (they are 
functions of time only). This model enables the 
investigation of the influence of vibrations through the 
convective inertia terms to the flow of the fluid. 

Mathematical model of the system 
It is assumed that the velocity of a laminar fluid flow 

in the direction of the flow is the function of the 
coordinates of the cross section and time, while the 
components of velocity in the plane of the cross section are 
given functions of time only, that is, 
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It is assumed that the cross section of the tube does not 

vary with the z coordinate. Here u, v, w denote the velocity 
components in the direction of the Cartesian orthogonal 
axes of coordinates, t − time (Fig. 1). The condition of the 
incompressibility of the fluid is identically satisfied. The 
stresses are: 
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where p denotes the pressure, µ is the viscosity of the fluid, 
the subscripts denote partial derivatives.  

The dynamic equilibrium equation in the direction of 
the z axis taking into account the full derivative of w takes 
the form 
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where ρ is the density of the fluid, g is the acceleration of 
gravity, pz is the gradient of the pressure in the direction of 
the z axis. 
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Fig. 1. The principal model of the system 

 
The boundary condition takes the form: 

wwn αµ =− ,  (4) 

where n is the outward normal vector to the boundary of 
the cross section of the flow, α is the coefficient of 
slippage (sliding friction between the fluid and the surface 
of the tube) [1, 2]. 

It is assumed that the boundary performs harmonic 
one-directional oscillations in the plane of the cross 
section. The appropriate components of the vibration 
vector are expressed like: 
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where a, b and ω denote the amplitudes and frequency of 
oscillations. This assumption of independence of the 
velocity components u and v on the coordinates x and y 
cannot be considered acceptable at very high frequencies, 
but it is essential in providing the simplified model and the 
method of analysis described further. 

The cross section of the flow is meshed using the finite 
element approximation. The resulting matrixes take the 
form: 
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where {δ}is the vector of nodal velocities, s is the 
boundary line of the cross section of the flow; the matrixes 
[N], [B] and [M] are the same as defined in [1]. 

Numerical determination of mass flow rates 
The averaged transverse velocities and the mass flow 

rates are determined by solving the four sequential 
problems. The numerical procedure is to some extent 
similar to the one described in [1], though the different 
mathematical formulations require alternation of the 
strategy of calculations. 

Static solution. It is assumed that the term 
gpz ρ+− is defined as constant in time and in-plane 

velocities are negligible (u = v = 0, {δ} = 0). The static 
load is formed as: 

{ } [ ] ( )dxdypgNF z
T∫∫ −= ρ0  (7) 

leading to the system of linear algebraic equations: 

[ ]{ } { }00 FK =δ .  (8) 

Steady harmonic solution. The sinusoidal variation of 
the in-plane velocities is assumed at 0=+− gpz ρ taking 
into account {δ0} obtained in the previous step what leads 
to the following system of linear algebraic equations: 
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{δs} and {δc} are the vectors of the sine and cosine 
components of the steady state motion. The total 
approximate velocities up to this point are: 

( ){ } { } { } ( ) { } ( )ttt cs ωδωδδδ cossin0 ++= . (11) 

Averaged transverse velocities. The final load vector 
is obtained in the process of assembly of the following 
loads: 

• The load occurring from the constant term gpz ρ+− ; 
• The non-linear term due to the static solution and the 

harmonic motion including the prescribed sinusoidal 
variation of the velocities u and v. 

The load is obtained by averaging the loads at a 
number of discrete time instants in a period of steady state 
harmonic motion: 
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where m is the number of discrete time instants within a 
period. Satisfactory approximation is achieved when 
m = 16. Finally, the velocities w are calculated from 

[ ]{ } { }11 FK =δ .  (13) 

Mass flow rate. The average mass flow rate is found 
by integrating over the cross sectional area: 

( )∫∫= dxdyyxwQ ,ρ ,  (14) 

where w(x,y) are the averaged transverse velocities 
calculated from {δ1} by using the shape functions of the 
appropriate finite elements. It is assumed that the 
averaging interval is much longer than the period of 
oscillations.  

By the way, this model has certain limitations at very 
high frequencies. The second set of equations from Eq.(9) 
leads to the condition {δs} ≈ {0}, so the influence of 
transverse vibrations to the flow diminishes when ω → ∞. 

The results of simulations 
The cross-section of the tube is assumed to be a 

rectangle. The characteristics of the fluid are assumed to 
represent a liquid type suspension. 

The velocity profiles (averaged surfaces of cross 
sectional velocities) with no external dynamic excitation 
and with the excitation in the direction of the x axis are 
presented in Fig. 2.  

The shape of the surfaces of cross flow velocities 
shows that the high-speed flow is concentrated around the 
relatively small middle part of the cross section. Better 
interpretation of the distribution of the velocity in the cross 
section is provided by the corresponding contour lines in 
Fig. 3. 

The contour lines in Fig. 3 clearly represent the change 
of the profile of velocities at appropriate transverse 
excitation. It can be noted that the amplitudes a and b in 
Fig. 3d are selected in a way that the length of the 
excitation vector would coincide with appropriate 
excitation vectors in Fig. 3b and Fig. 3c. Though the 
relatively high velocity region is expanded in the direction 
of the excitation, the module values are decreased, 
resulting in lower mass flow rates.  

External transverse excitation decreases the flow 
velocities. This is a rather surprising effect keeping in 
mind the results from [1] where the longitudinal vibrations 
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a 

 
b 

Fig. 2. Cross flow velocities: a) without vibrational excitation; b) with the excitation in the direction of the x axis 

(a = 0,5 mm; b = 0 mm; ω = 300 Hz) 
 
 

 
 

a) no external excitation 
 

 
 

c) excitation in the direction of the x axis  
(a = 0 mm; b = 0,5 mm; ω = 300 Hz) 

 
 

 
 

b) excitation in the direction of the y axis  
(a = 0,5 mm; b = 0 mm; ω = 300 Hz) 

 

 
 

d) excitation in the direction of the bisector of x-y axes  
(a = 0,35 mm; b = 0,35 mm; ω = 300 Hz) 
 

Fig. 3. The contour lines of cross flow velocities: 
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of the boundary increased the total mass flow rate. Such an 
effect can be explained by the presence of convective 
inertia terms of the fluid in the governing equation of 
motion describing the flow at the transverse excitation of 
the boundary. 

Relationship between mass flow rates and the 
frequency of excitation in presented in Fig. 4. As noted 
previously, this model should be considered invalid for 
very high frequencies, but the range of its applicability it 
provides the effect of convective inertia terms to the flow. 

 

 

Fig. 4. The relationship between the excitation frequency ω and the 
mass flow rate: x markers represent the amplitudes a = 0,35 
mm; b = 0,35 mm (no external excitation); * markers represent 
the amplitudes a = 0,35 mm; b = 0,35 mm 

Conclusions 
The mathematical model describing the motion of 

fluid in a tube performing transverse vibrations is 
developed. It must be noted that this model incorporates 
the excitation through the convective intertia terms and 
represents the dynamic behavior of the liquid suspension. 

The approximate method for the determination of the 
surface of the averaged transverse velocity is proposed. 
The obtained results of the modeling enable the selection 
of suitable frequencies and feasible levels of amplitudes of 
excitation for the control of mass flow rates. It is shown 
that the decrease of the flow rate can be controlled by the 
frequency of transverse vibrations. The results of the 
analysis can be applied in the design of vibrational 
spraying and dosing devices of various substances.  
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Skersinių sienelės virpesių įtaka skysčių tekėjimui 

Reziumė 

Straipsnyje analizuojama skersinių vamzdelio virpesių įtaka skysčių 
tekėjimui. Sukurtas sistemos matematinis modelis bei netiesinės 
dinaminės sistemos skaitinės analizės strategija. Tyrimų rezultatai gali 
būti panaudoti vibraciniams purkštukams ir dozatoriams konstruoti.  
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