Thermodynamics of Mn(II) and La(III) sulphate complexes in aqueous solutions

B. Voleišienė¹, D. Rutkūnienė²

Kaunas University of Technology,

¹Prof. K. Baršauskas Ultrasound Research Institute, ²Department of Physics

Introduction

In recent years lanthanide (III) ions are often used as structural probes in biological systems in order to obtain some information on the binding sites of "vitality" elements such as Ca, Mg, Mn, Fe, Mo, V and others that are formed in coordinated complexes of humane organism. Two-metal ions model $(Mg^{2+}-La^{3+})$ was proposed at a constant concentration of Mg^{2+} ion with La^{3+} as a competing metal ion in the ribozyme cleavage reaction [1]; this mechanism may be also applied to many phosphoryl transfer reactions catalyzed by polymerases and related enzymes in the processes of gene expression and their regulation. Rare earth elements have also been widely used as the micro-fertilizer for improving the growth and quality of crops in China [2]. It has been verified that a suitable amount of lanthanide ions can improve the photosynthesis of plants. The replacements of magnesium in chlorophyll by light rare earth elements, such as La³⁺, Sm³⁺and Dy³⁺have been reported by several researchers [2].

Comparing the ionic radius of Mn^{2+} and La^{3+} and on the similarity of their chemical properties the knowledge of the structural properties as well as kinetical and thermodynamical processes occurring in aqueous solutions of sulphates of these elements is very important for understanding many phenomena in physical chemistry, biochemistry, also for chemical engineering and process control.

The aim of this paper was to determine the thermodynamic parameters of complexes of Mn(II) and

La(III) with SO_4^{-2} on the basis of ultrasound velocity dispersion measurements data.

Results and discussion

In our earlier studies [3, 4], ultrasound velocity dispersion was investigated in aqueous solutions of $MnSO_4$ and $La_2(SO_4)_3$ sulphates at different concentrations and at various temperatures. A single relaxation was observed for investigated solutions. No concentration dependence of relaxation frequency f_R was observed in the case of both systems, but f_R increases with the increase of the temperature. Experimental results for tested solutions are listed in Table 1.

We have calculated thermodynamic data of the relaxation process based on the numerical values of relaxation frequencies and on the ultrasound velocity dispersion at different temperatures. According to the variation of $\tau^{1}=2\pi f_{R}=k_{f}+k_{R}$ with temperature *T* it may be written as

$$\frac{d \ln(\tau^{-1}/T)}{d(1/T)} = \frac{\Delta H_2}{R} + \frac{d \ln(1+K)}{d(1+K)},$$
$$\frac{dK}{d(1/T)} = -\frac{\Delta H_2}{R} - \frac{K}{1+K}\frac{\Delta H_0}{R},$$
(1)

where $(K/1+K)(\Delta H_0/R)$ is small with respect to $\Delta H_2/R$, then Eq.1 reduces to

$$\frac{d\ln(\tau^{-1}/T)}{d(1/T)} = -\frac{\Delta H_2}{R}$$
(2)

Investigated solutions	Temperature t , ⁰ C	Relaxation frequency $f_{\rm R}$, MHz	Ultrasound velocity dispersion $c_{\infty} c_0$, m/s	Ultrasound velocity at high frequencies c_{∞} , m/s	Ultrasound velocity at the relaxation frequency $c_{\rm R}$, m/s
MnSO.	10	2.7	2.4	2.4 1507.2	1506.0
1011504	16	2.9	2.5	1526.6	1525.6
	20	4.5	2.8	1538.0	1536.8
	30	5.0	3.1	1559.8	1558.5
La ₂ (SQ ₄) ₂	20	13.5	1.10	1483.9	1483.3
$La_{2}(504)_{3}$	30	17	1.06	1510.5	1509.9
	40	23	0.97	1530.0	1529.5

Table 1. Relaxation parameters of MnSO₄ solutions at the concentration 0.55 mol/l and of La₂(SO₄)₃ solutions at the concentration of 0.01 mol/l for different temperatures

ISSN 1392-2114 ULTRAGARSAS, Nr.1(42). 2002.

and a plot of $\ln(\tau^{-1}/T)$ versus 1/T shall give $-\Delta H_2/R$ as the slope and $[\ln(k/h)]+(\Delta S/R)$ as the intercept (where k_f and k_R are the rate constants for the forward and reverse processes, $K = k_{f'}/k_R$ is the equilibrium constant, k - Boltzmann's constant, h - Planck's constant, T is the absolute temperature, R is the gas constant, $-\Delta H_2$ -the free enthalpy shift is the activation energy E_a of the backward reaction, ΔH_0 is the difference in enthalpy).

Fig. 1 reports the plot of $\ln((\tau^{-1}/T)$ versus 1/T for MnSO₄ solutions and Fig. 2 for Ln₂(SO₄)₃ solutions respectively. The slope of $\ln(f_{\rm R}/T)$ versus 1/T gives the activation energy: $E_{\rm a} = 23$ kJ/mol of the relaxation process in MnSO₄ solutions and $E_{\rm a} = 19$ kJ/mol for Ln₂(SO₄)₃ solutions. The entropy ΔS is calculated from the intercept: ΔS =-115.2 J·K⁻¹·mol⁻¹ for MnSO₄ and ΔS =-103,4 J· K⁻¹·mol⁻¹ for Ln₂(SO₄)₃. These values at *T*=293 K give in turn ΔG =42.8 kJ·mol⁻¹ for MnSO₄ and ΔG =24.0 kJ·mol⁻¹ for Ln₂(SO₄)₃ complexation reaction.

Fig. 1. Variation of $ln(f_R / T)$ versus 1 / T for MnSO₄ solution

Fig. 2. Variation of $ln(f_R / T)$ versus 1 / T for La₂(SO₄)₃ solution

The difference in enthalpy ΔH_0 can be evaluated by the graphical method from the dependence of $\lg(T \mu_{\text{max}}/c^2)$ versus 1/T [5] or in our case from ultrasound velocity dispersion measurements $\lg(T \Delta c \pi / c_{\infty} \times c_{\text{R}}^2)$ versus 1/T, because it is known that the excess absorption per

wavelength is related to the ultrasound velocity dispersion Δc by the following equation [6]:

$$(\alpha\lambda)_{\max} = \mu_{\max} = \Delta c \pi / c_{\infty} \times (\omega^2 \tau^2 / 1 + (\omega^2 \tau^2)^{-1}, \qquad (3)$$

where c_{∞} is the ultrasound velocity corresponding to very high frequencies $f > f_{R_{c}}$

 $\omega = 2 \pi f, c_{\rm R} = (c_{\infty} + c_0)/2.$

The change in the internal energy ΔH_0 evaluated from the plots of $10 + \lg(T \Delta c \pi / c_{\infty} \times c_R^2)$ versus 1/T as shown in Fig. 3 is equal to 9.1 kJ/mol of the complexation reaction in MnSO₄ solutions and $\Delta H_0 = -6.25$ kJ/mol in the case of Ln₂(SO₄)₃ solutions (Fig. 4).

Fig. 3. Graphic determination of the change in the internal energy ΔH_0 of the relaxation process in MnSO₄ solution

Fig. 4. Definition of the difference in enthalpy ΔH_0 for complexation reaction in Ln₂(SO₄)₃ solutions

Table 2 lists the thermodynamic parameters obtained from the studies solutions.

The free energy ΔG of the complexation reaction for the same ligand and the different cation can be expressed [7]:

 $\Delta G = \Delta G_{\rm R} + \Delta G_{\rm H} =$ = $\Delta H_{\rm R} + \Delta H_{\rm H} - T(\Delta S_{\rm R} + \Delta S_{\rm H}),$

where R denotes cation – anion interaction, H denotes hydration changes upon complexation.

(4)

Table 2. The thermodynamic parameters for complex formation of Mn²⁺ and La³⁺ sulphates

Parameters	Complexes of Mn ²⁺	Complexes of La ³⁺			
$E_{\rm a} (\rm kJ \cdot mol^{-1})$	23.0	19.0			
ΔH_0 (kJ·mol ⁻¹	9.1	-6.25			
$\Delta S (J \cdot K^{-1} \cdot mol^{-1})$	-115.2	-103.4			
$\Delta G (\text{kJ-mol}^{-1})$	42.8	24.0			
In this spectrum $ A $ $ I > A $ $ I = A A A A A A A A A $					

In this equation, $|\Delta H_{\rm H}| > |\Delta H_{\rm R}|$ and $|(\Delta S_{\rm H}| > |(\Delta S_{\rm R}|)$. If the net hydration decreases upon complexation, both $\Delta H_{\rm H}$ and $\Delta S_{\rm H}$ would be positive; since positive values of ΔH and ΔS are observed for most reaction in aqueous solutions with simple ligands, the hydration terms are, indeed, larger than the reaction terms. Moreover, if the hydration terms cancel, then

$\Delta H_{\rm H} \approx T \Delta S_{\rm H}; \ \Delta G_{\rm H} \approx 0.$

As a result, $\Delta G \approx \Delta G_{\rm R}$, i.e., the free energy of complexation is reflective from the cation - ligand interaction.

Ultrasound velocity dispersion is considered to be due to the process of association of Mn^{2+} and La^{3+} ions with SO_4^{-2} and formation of inner sphere complexes according to the modified two-step mechanism proposed by Eigen and Tamm for the studies of the complexation of many metal ions in water or mixed solvents [8]. In outer sphere complexation the primary hydration sphere of ions are minimally perturbed, so the difference in enthalpy ΔH_0 must be ≈ 0 . In general, the values of enthalpy of complexation for the same ligand depend on interactions between Me - H₂O and Me - L (Me - metal ion, L - ligand). The positive value of enthalpy of complex formation in MnSO₄ solutions is offered as a possible explanation in terms of the hydratational changes. It agrees with the water exchange reaction between the first and the second coordination shell around Mn²⁺ ion in aqueous solutions. Water exchange process on $[Mn(H_2O)_6]^{2+}$ is characterized by positive enthalpy $\Delta H^{\#}$ value and negative $\Delta V^{\#} = -5.4 \text{ cm}^{3} \text{ mol}^{-1}$ sign of the volume of activation [9]. This indicates an associative activation mode and a concerted I_a mechanism is proposed according to Langford and Gray classification of reaction mechanisms [10]. Both bond making and bond breaking are involved in the rate determining reaction for interchange mechanism I. A ligand (e.g. a co-ordinating solvent molecule) rapidly diffuses into the outer-sphere of the complex, followed by an interchange with the leaving ligand. For associative interchange I_a mechanism bond making dominates over bond breaking.

The experimental negative value of enthalpy obtained in this work for complex formation in La2(SO4)3 solutions may be interpreted so that the lanthanum-ligand interaction is larger than the hydratational changes. As it is known, the chemical bond of complex formation depends on the ionic potential z/r (z is the valency of metal, r is the radius of the cation). Ionic radii in aqueous solutions are following: r_{Mn}^{2+} = 83 pm and r_{La}^{3+} = 122 pm [11]; so the ionic potential of lanthanum is larger and cation-ligand interaction is stronger.

ISSN 1392-2114 ULTRAGARSAS, Nr.1(42). 2002.

Now it is well established from neutron scattering, X-ray scattering, density and spectrophotometric techniques [12] that the lighter ions of lanthanide (La³⁺ - Nd³⁺) predominate in nine-coordinate species. Then the rate-determining step for complex formation in La₂(SO₄)₃ solution is proposed:

$$La(H_{2}O)_{9}^{3+} \frac{\text{rate}}{\text{determining}} \rightarrow La(H_{2}O)_{8}^{3+} +$$

+H_{2}O $\frac{\text{rapid}}{H_{2}O} \rightarrow La(H_{2}O)_{9}^{3+}$
rapid \downarrow SO₄⁻²
[La(H_{2}O)_{8}SO_{4}]^{+} (5)

The relaxation frequency is independent of concentration for both studied solutions. Therefore $\tau^{-1}=2\pi f_R = k_f + k_R$ gives: MnSO₄, t = 20⁰ C, $k_f + k_R = 2.8 \cdot 10^7 \text{ s}^{-1}$, La₂(SO₄)₃, t = 20⁰ C, $k_f + k_R = 8.5 \cdot 10^7 \text{ s}^{-1}$.

The relaxation frequency $f_{\rm R}$ primarily reflects on the rate of constant $k_{\rm R}$. The water exchange rates are closely correlated with the rate k_I of the interchange between an inner sphere water molecule and SO4-1 ion from the outer sphere coordination. The dissociation of a water molecule from the primary hydration shell for the water exchange on $[Nd(H_2O)_9]^{3+}$ [12] corresponds to an increase in volume, this pathway is classified as a dissociative interchange Id mechanism. Water exchange on the ion La³⁺ occurs most probably by a I_d mechanism if this reaction volume is similar for the all light lanthanide ions.

The activation energy E_a of the backward reaction of complexation, e.g. the release of the ligand from the first coordination sphere of the cation in MnSO₄ solutions is larger than E_a in La₂(SO₄)₃ solutions. It may be explained by the difference in the coordinated numbers of the cation. The Mn²⁺ ion in water solutions exists as hexaaqua species and confirms the fact that the hydration process has an electrostatic character the ion-solvent interactions is stronger for $[Mn(H_2O)_6]^{2+}$ compare to $[La(H_2O)_9]^{3+}$ species.

Using the interpretation that the ultrasound velocity dispersion Δc in MnSO₄ and La₂(SO₄)₃ is caused by an association process, the magnitude of Δc may be the quantity of complexation. As seen from Table 1, the dispersion values are close for studied solutions but the concentration of MnSO₄ solutions is approximately 55 times larger. Thus, the amount of inner sphere complexes in MnSO₄ solutions is very insignificant, therefore the our determined rate constant is closely correlated with water exchange rate constant on $[Mn(H_2O)_6]^{2+}$ which is equal so $2.1 \cdot 10^7 \, \text{s}^{-1} \, [12].$

Conclusions

The thermodynamic parameters for the formation of inner sphere complexes in MnSO₄ and La₂(SO₄)₃ solutions have been calculated on the basis of relaxation data. The positive value in the internal energy ΔH_0 in MnSO₄ solution is interpreted in terms of the hydrational changes during the association process and negative value ΔH_0 for the complexes is proposed with dominant the $[LaSO_4]_{aq}$

ISSN 1392-2114 ULTRAGARSAS, Nr.1(42). 2002.

lanthanum-ligand interaction. The amount of inner sphere complexes in $MnSO_4$ solution is very insignificant occurring only at high concentrations. In the rate determining reaction for complex formation different mechanisms for individual cations are proposed, e.g. the associative interchange I_a for Mn(II) and the dissociative interchange I_d for La(III) sulphates.

References

- Lott W. B., Pontius B. W., Von Hippel P. H. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate. Proc. Natl. Acad. Sci. USA. Biochemistry. 1998. Vol. 95. P. 542-547.
- Wang Q., Lai Y., Yang L., Huang B. Preliminary study of existing species of lanthanum in the spinach leaves after being cultivated with a culture solution containing lanthanum. The Japan society for Analytical Chemistry. Analytical sciences. 2001. Vol. 17. P. 789-791.
- Voleišienė B., Miglinienė G., Voleišis A. Ultrasonic study of ionic association in aqueous solutions of lanthanide salts. 137th meeting of the Acoustical society of America and the 2nd Convention of the European Acoustics Association, Berlin, Collected papers. CD-ROM, Technische Universitard Berlin. 1999. P. 4.
- Voleišienė B., Rutkūnienė D. Ultragarsiniai cheminės relaksacijos tyrimai Mn(II) ir La(III) sulfatų vandeniniuose tirpaluose. 4-osios Lietuvos nacionalinės fizikų konf. darbai. Vilnius.2001. P.135.
- Miecznik P., Eggers F. Ultrasonic study on the complexation kinetics of N, N-diethyiformamide and zinc acetate in aqueous solutions. Acustica acta acustica. 1997. Vol. 83. P. 67-73.
- Stuehr J., Yeager E. In: Physicheskaya akusika, (Ed. I. G. Michailov), Moscow. 1968. 2(A). P. 371.
- Choppin G. R. Thermodynamics of lanthanide-organic ligand complexes. J. Less-Common Metals. 1985. Vol. 112. P. 193-205.

- Eigen M., DeMaeyer L. In: Technique of Organic Chemistry. VIII (2), (Ed. A. Weissberger). New York. 1963.
- Merbach A. E. Use of high pressure kinetic studies in determining inorganic substitution mechanisms. Pure & Appl. Chem. 1987. Vol. 59. No. 2. P.161-172.
- Langford C. H., Gray H. B. Ligand substitution processes. Benjamin, New York. 1965.
- Marcus Y. Ionic radii in aqueous solutions. Chem. Rev. 1988. No. 88. P. 1475-1498.
- 12. Helm L., Merbach A. E. Water exchange on metal ions: experiments and simulations. Coord. Chem. Rev. 1999. Vol. 187. P. 151-181.

B. Voleišienė, D. Rutkūnienė

Mn(II) ir La(III) kompleksų vandeniniuose sulfatų tirpaluose termodinaminiai parametrai

Reziumė

Remiantis relaksacinių parametrų temperatūrinėmis priklausomybėmis apskaičiuoti vandeniniuose sulfatų tirpaluose esančių Mn(II) ir La(III) kompleksų su vidine koordinacine sfera termodinaminiai parametrai. Aktyvacijos energija E_a apibūdina kompleksų susidarymo reakcijos atgalinį procesą, t.y. vandens molekulių grįžimą į katijono koordinacinę sferą. Susidarant mangano sulfatiniams kompleksams $E_a = 23$ kJ/moliui, o susidarant lantano sulfato kompleksams, $E_a = 19$ kJ/moliui. Nevienoda E_a aiškinama skirtingu Mn²⁺ ir La³⁺ katijonų koordinacinių skaičiumi, kadangi lantano koordinacinis skaičius yra 9, taigi katijonas ir vandens molekulės sąveikauja silpniau. Nustatėme, kad, susidarant mangano kompleksams, entalpijos pokytis $\Delta H_0 = 9,1$ kJ/moliui, o susidarant lantano sulfatui ΔH_0 yra neigiamas ir lygus–6,25 kJ/moliui. Teigiamas ΔH_0 dydis mangano kompleksų susidarymo reakcijoje leidžia teigti, kad vyksta dehidratacija. Susidarant lantano kompleksams, lemiamą įtaką ΔH_0 turi ne hidratacijos sumažėjimas, bet katijono ir anijono sąveika. Abiejų tyrinėtų tirpalų reakcijų entropija vra neigiama.

Pateikta spaudai 2002 04 9