
ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 28

A practical approach to DSP code optimization using compiler/architecture

B. Varnagiryte1, A. Zemelis1, O. Olsen1, P. Koch1, O. Wolf2, E. Kazanavicius3

(1) Embedded Systems Group, CPK, Aalborg University, Denmark, E-mail: {bv, za, oo,pk}@kom.auc.dk

(2) DSP Assist, Denmark, E-mail: wolf@dspassist.com

(3) DSP Laboratory, Studentu 50 – 214c, Kaunas University of Technology ,LT-3031Kaunas,Lithuania,
 E-mail: ekaza@dsplab.ktu.lt

Introduction

Real-time digital signal processing algorithms such as
filters, FFTs, speech coding algorithms, etc. can be
realized on Digital Signal Processors (DSPs) using
assembly language. As the size of DSP applications
increase programming such algorithms in assembler is a
time and cost consuming task, because it requires a
thorough knowledge of both the processor architecture and
the algorithm to write an efficient assembly code.

To reduce programming cost and to increase
reusability of the code high-level languages (e.g., C and
C++) and their compilers can be used. However, it is a
well-known fact that in most cases a compiler-generated
code for DSP processors has lower performance in terms
of execution time and memory usage than a hand-
optimized code. Consequently, to increase code
performance selected portions of the compiler generated
code may have to be rewritten in assembler. Therefore, a
unified performance evaluation of the DSP processor and
the associated compiler becomes relevant.

The evaluation may consider different aspects such as
speed (i.e., execution time), reliability, utilization of
memory and functional units or power consumption.

The maintainability (or reuse) aspect is also very
important if the same piece of code should by executed on
different processors [1].

In the past benchmarking of digital signal processing
hardware was conducted almost only by the chip vendors
themselves [2,3]. Within the last decade independent DSP
analysts such as BDTi [12], EEMBC [13] and DSPstone
[2,3] employed a benchmarking methodology for DSP
compilers that compares the performance of the compiled
C-code to the hand-optimized assembly code in terms of
program/data memory consumption and execution time.
The hand-optimized code can be considered optimal, and
by analyzing the generated assembly code it is possible to
identify the parts of the C-code that were interpreted
differently by the compiler.

A revised C compiler benchmarking methodology was
proposed in [4]. This methodology, applied to three
different types of DSP architectures, such as enhanced
conventional DSP processors, superscalar DSP processors,
and VLIW DSP processors, shows that in many cases
efficient implementation of a particular DSP application
depends on the selected architecture as well as on the
complexity of the DSP application. The methodology also
helps to analyze how much the compiler-generated code
differs from optimal (i.e., assembly code), to identify the

strong and weak parts of the compiler, and to investigate,
which features of the architecture may influence the
performance of the C compiler.

The evaluation of C compilers is a widely discussed
topic of recent scientific investigations. In [5] instruction
scheduling and register allocation are discussed as
important compiler efficiency influencing factors. This is
because parallel execution of multiple instructions requires
correct instruction combination as well as appropriate
operands and data types.

In this paper we analyze the C-compiler for the Texas
Instruments TMS320C55x (C55x) processor using two
well-known computationally intensive algorithms (FIR
filter and LMS algorithm). We present an approach
consisting of a sequence of directed experiments that helps
to analyze and exploit some important features of the
TMS320C55x architecture such as dual multiply
accumulate unit (dual MAC) and instruction level
parallelism. In [11] Texas Instruments recommend non –
standard C coding guidelines that help to exploit the dual
MAC unit using a direct form I of block FIR filter kernel
as an example. In our experiments we use a direct form I
transposed implementation of block FIR filter and propose
a different approach to dual MAC exploitation while
recording code size and cycle count for the experiments.

The remainder of the paper is organized as follows:
Section II gives a brief overview of relevant features of the
C55x architecture, Section III describes some of the
optimization techniques used in our investigation, Sections
IV and V present results and an analysis of these results
and final conclusions are presented in Section VI.

Architecture description
The Texas Instruments TMS320C55x is a multi-issue

16-bit fixed-point DSP processor family. The main
features of C55x are as follows:

- Five functional units: Instruction Buffer Unit (I-
Unit), Program Flow Unit (P-Unit), Address-Data
Flow Unit (A-Unit), Data Computation Unit (D-
Unit), Memory Interface Unit (M-Unit);

- Two Multiply Accumulate Units (dual MAC), two
ALUs, and four accumulators;

- Five 16-bit data busses: three for data read and
two for data write;

- Variable instruction width architecture. The width
of the instruction word can vary between 8 and 48
bits;

- Multi issue: executes up to two instructions in
parallel.

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 29

The exploitation of variable instruction width could
lead to smaller program memory usage, while employment
of the dual MAC architecture as well as dual ALUs and
four accumulators could lead to parallel execution of
instructions. However, there is no hardware-based
scheduling of instructions; therefore the parallelism has to
be detected and scheduled at compile time.

The main requirements for parallelism exploitation are
in general that the resource constraints of the architecture
are respected. This implies in particular that [6]:

- Two instructions can be executed in parallel if
assembled they do not exceed 48 bits (6 bytes);

- Each instruction makes no more than a single data
memory access;

- Memory, cross unit and constant busses do not
compete for access;

- Parallelism is allowed between operations executed
within the A-unit, the D-unit or the P-unit;

- Parallelism between subunits within the A-unit, D-
unit or P-unit is allowed.

Optimization techniques
Algorithm kernels are used for compiler benchmarking

in all references [2,3,4,7,8]. Such kernels as FFTs, FIR
filter, etc. are the building blocks of many DSP
applications. A large percentage of the execution time is
spent in these computationally intensive kernels, which can
significantly influence the overall execution time of the
program. The advantages of using kernels are:

- their simplicity for implementation and
optimization in assembly language,

- the possibility for reuse in many different types of
applications,

- the possibility to measure the processor
performance in these kernels.

In our approach we analyze the compiler-generated
code, and estimate the compiler’s ability to exploit the
features of the given architecture.

As discussed in [10], compiler optimization techniques
operate on three levels: machine dependent, describing the
instruction-level sensitivities of a compiler (Coding Style
Transformations), architecture dependent, denoting those
parts of a program that relate to the general hardware
implementation, but not to a specific machine (e.g.
Multiple MAC Units, Parallel Instruction Execution or
Multiple Data Streams) and architecture independent,
related to those aspects of program formulation that do not
depend on a particular computer system or even on a type
of implementation, like pipeline processing (Common Sub-
expression Elimination, Dead Variable Elimination, Code
Motion or Constant Propagation). Our investigation covers
optimization techniques that allow dual MAC and
instruction level parallelism exploitation.

Consider an FIR filter with impulse response h and
input x, where the output y is given by Eq.1.

 ∑
−

=

−=
1

0
)()()(

N

m
mnxmhny . (1)

A parallel execution of an FIR filter on the ‘C55x can
be performed using 3 data busses and produces two outputs

as shown in Fig.1. This is done by computing two
sequential filter iterations (e.g., outputs y(n) and y(n-1)) in
parallel when both MAC units utilize a single coefficient,
h(m) as shown in Equations (2) through (5):

y(n) = h(0)*x(n) + h(1) *x(n-1) + ... + h(N-1)*x(n-N-1). (2)

y(n-1) = h(0)*x(n-1)+ h(1) *x(n-2) + ... + h(N-1)*x(n-N-2). (3)

y(n-2) = h(0)*x(n-2)+ h(1) *x(n-3) + ... + h(N-1)*x(n-N-3). (4)

y(n-3) = h(0)*x(n-3)+ h(1) *x(n-4) + ... + h(N-1)*x(n-N-4). (5)

This approach is called time-based loop unrolling,
[14].

For the first term in each of these two rows, the first
MAC unit could compute the h(0)*x(n), while the second
MAC unit could compute h(0)*x(n-1). For these two
computations only three different values are required, i.e.,
h(0), x(n), and x(n-1). Three available data-read busses
(DB, CB, BB) permit reading these three data values from
separate memory units in one instruction cycle. In the next
cycle, h(1)*x(n-1) and h(1)*x(n-2) are computed similarly
and added to the previous result, until both of the output
vector samples are computed. In this way, DSP
performance at two MAC operations per clock cycle
should be maintained.

DB (16)

BB (16)
CB (16)

*

+ +

*

AC0 AC1

x(n-m)
h(m)

x(n-m-1)

MAC
#1

MAC
#2

y(n) y(n-1)

Previous
AC0 / AC1

Fig. 1. FIR filter on C55x

A similar implementation is expected for the LMS
algorithm kernel as it is based on FIR filtering.

To evaluate the compiler/architecture interaction the
chosen algorithm should reveal the correspondence
between language features expressing:

• Data access,
• Loop constructs,
• Arithmetic,

and architectural features such as:

• Addressing,
• Zero overhead looping,
• Computational resource utilization (dual MAC),
• Parallel instruction execution.
These optimizations applied to the FIR filter kernel are

discussed in the following section. Metrics for the selected
experiments are presented.

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 30

Results and analysis
Figure 2 shows one possible sequence of experiments

leading to parallel instruction execution.
The experiments were based on the execution time

profiling information from the selected FIR and LMS
kernels. Both kernels are implemented as functions with
appropriate parameters. This is natural considering usage
of these kernels in larger applications.

Functions are declared as void, variables are declared
using native processor data types in order for compiler to
select the optimal instructions. Thereby the compiler could
map an operation into single instruction, or execute
instructions in parallel if possible.

Experiments were performed with a combination of
manual, automatic and pragma specified C code
transformations using the Texas Instruments Code
Composer Studio, Version 2.0. The full symbolic debug
and interlisting modes were turned off during the
experiments.

Experiments E1-E4 denote the most successful order
of optimizations to exploit instruction level parallelism. C
code and generated assembly code obtained for E1-E4
experiments are explained afterwards. All the results are
presented for a 16 tap FIR filter, producing 40 output
samples. Some observations for a smaller number of filter
taps are also made.

Counter 1

Initial Program Version

Dual MAC Exploitation

Instruction Level
Parallelism
Exploitation

E2

E1

E3Counter 1
Instruction Level

Parallelism
Exploitation

Dual MAC Exploitation

Pragma
(N<12)

Manual
(no dual
MAC)

Automatic
(N>=12)

Loop Unrolling

E3

Pragma
(N<12)

ManualAutomatic
(N>=12)

Loop Unrolling

E4Counter 2Counter 2E4

Use of local variables
and

Forward Store

Fig. 2. Directed sequence of experiments

Solution Space for FIR filter
14892

12890
11962

2065
2065 2065

504 504 924

31

45

45
52

52

56

76

95

52

0

2000

4000

6000

8000

10000

12000

14000

16000

Not optimized FIR filte
r kernel

Opt. o
ption -o0

Opt. o
ption -o1

Opt. o
ption -o2

Opt. o
ption -o3

Loop unrolling (In
itial version) [E

1]

F. Store+L. unrolling (D
ual M

AC)[E2]

Counter 1 (Final version) [E
3]

Counter 2 [E4]

Optimizations

C
yc

le
 C

ou
nt

0
10
20
30
40
50
60
70
80
90
100

C
od

e
Si

ze

Cycle Count
Code Size

Fig. 3. Results for FIR filter

Figure 3 shows the results obtained. As seen, the
compiler optimizer is capable of reducing the cycle count
from 14,893 to 2,066, just by using built-in optimizations
supplied by –o2 and -o3 compiler options, [9].

E1: Initial version with Loop Unrolling
optimization

In order to generate dual MAC instruction, compiler
maximum optimization options –o3 -mb should be
enabled. After applying these options to the FIR filter
kernel, this version was named “initial”, and was used as a
starting point for the optimizations in Experiments E2
through E4 shown in Figures 5 through 7.

The C code for the “initial” version of FIR filter kernel
as well as the generated assembly code are shown in
Figure 4. In this version of code, filter coefficients h[],
input samples x[], and output vector y[] were defined as
global variables.

C Code Assembly Code

void fir(const
 int h[],
 int x[],
 int y[])

{
int n,m;

n=nSamples-1;
while (n >= 0)
 {
 m = 0;
 while (m <nTaps)
 {
 y[n]+=h[m]*x[n-
m];
 m++;
 }
 n--;
 }
}

MOV #((_y+38)&0xffff),AR3
 MOV #39, T1
 MOV #19, BRC0
 MOV #15, BRC1
 RPTBLOCAL L6-1
 ; loop starts
L3:
 ADD #(_x &0xffff),T1,AR4
 MOV #(_h & 0xffff), AR2
 SUB #1, AR4, AR1
 RPTBLOCAL L5-1
 ; loop starts
L4:
 MOV *AR3(short(#1)),AC0
 MACM *AR4-,*AR2,AC0,AC0
 MOV AC0,*AR3(short(#1))
 MOV *AR3, AC0
 MACM *AR1-,*AR2+,AC0,AC0
 MOV AC0, *AR3
 ; loop ends
L5:
 SUB #2, T1
 SUB #2, AR3
 ; loop ends
L6:
 return
 ; return

Fig. 4. Experiment E1 (Initial version with Loop Unrolling)

The generated assembly code reflects that the compiler
recognizes the possibility for the while() loops to be
translated into a block repeat instructions (RPTBLOCAL)
using two branch counters, BRC0 and BRC1. It
understands that the += (accumulate) and * (multiply)
operators can be translated into one multiply-add
instruction.

The compiler also performs automatic loop unrolling.
The loop unrolling does not help the compiler generate
dual MAC instructions, however, and the compiler instead
replicates the inner loop twice producing two sequential
MAC instructions. In addition, on each iteration of the
inner loop the compiler loads and stores elements of y[]
that do not change until the next iteration of the loop. It is
especially these unnecessary loads and stores that cause
additional cycle counts in this experiment.

It may not be surprising that the compiler makes these
choices, because the input array x[] is not specified as a
const array. Omitting the const qualifier from the input

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 31

array x[] implies that the compiler should assume that
elements of x[] may be overwritten during the execution
of the function, for example if y[] points to somewhere in
x[]. Hence, the compiler should assume that elements of x[
] may be overwritten during the each iteration of the inner
loop.

An attempt to use the const qualifier for both x[] and
h[] resulted in a compiler error in experiment E1. The
compiler evidently realized that loop unrolling and dual
MAC was possible, because it generated the following
assembly language code for the inner loop:

 MACM *AR1-, *AR2+, AC0, AC1 || MACM *AR4-,
*AR2, AC1, AC0

Unfortunately, this combination of instructions is

illegal, as two instructions combined in parallel cannot
consume more than six bytes of memory for decoding.
Thus the compiler aborts with an error. Therefore
experiment E1 was performed without qualifying x[] with
the const keyword to avoid this compiler defect.

The compiler understands the index arithmetic used to
select elements in x[], h[], and y[] arrays, and translates
this into efficient indirect addressing with post-increment
and post-decrement operations.

E2: Forward Store

As mentioned, initially a global variable for the
summation of y[] was used. While using global variables,
the compiler is obligated to perform an intervening store or
load to memory during the execution of the loop.

In Forward Store optimization, [7], store to a global
variable y[] is done by performing the summation in a
local variable accum and storing the final result to y[]
outside the loop afterwards.

According to [15], ‘C54x and some other DSP
compilers are not performing Forward Store optimization.
Our investigations have shown that the same optimization
is absent in the ‘C55x compiler, and it is therefore
necessary to do it explicitly.

As seen in Figure 5, the compiler understands that the
local variable accum does not change until the next
iteration of the inner loop, and eliminates the unnecessary
loads and stores that hampered performance in experiment
E1.

Thus leaving only a multiply-accumulate operation
inside of the inner loop, the compiler also realizes that loop
unrolling enables dual MAC performance in the inner loop.
Hence, with a simple forward store optimization, the
compiler rewrites the inner loop to a single-instruction dual
MAC loop.

Experiments also showed that automatic loop unrolling
is not observed when the inner loop is repeated less than 12
times. When unrolling the loop manually in C and
applying all the optimizations discussed so far the
desirable performance is not obtained either. In both cases
the compiler generates a one-to-one translation of the code
and does not recognize the computational grouping
necessary for dual MAC exploitation and hence the
possibility to generate the dual MAC instruction.

C Code Assembly Code

void fir(const
 int h[],
 const int x[],
 int y[])
{
int n,m,accum;

n=nSamples-1;
while (n >= 0)
 {
 m = accum = 0;
 while(m < nTaps
)
 {
 accum+=h[m]*x[n-
m];
 m++;
 }
 y[n]=accum;
 n--;
 }
}

MOV#((_y+38)&0xffff),AR4
 MOV #39, AR1
 MOV #19, BRC0
 RPTBLOCAL L6-1
 ; loop starts
L3:
 ADD #(_x&0xffff),AR1,AR3
 SUB #1, AR3, AR2
 MOV #(_h & 0xffff), CDP
 MOV #0, AC0
 RPT #15
|| MOV AC0, AC1

 ; loop starts
L4:
MAC *AR2-, *CDP+, AC1 :: MAC
*AR3-, *CDP+, AC0
 ; loop ends
L5:
 MOV AC1, *AR4
 MOV AC0, *AR4(short(#1))
 SUB #2, AR4
 SUB #2, AR1
 ; loop ends
L6:
 return

Fig. 5. Experiment E2 (Forward Store)

For a number of taps less than 12, the compiler

generates a MACM instruction. Therefore, in order to
generate a dual MAC instruction, the pragma UNROLL
has to be applied in this case.

The compiler also arranges housekeeping instructions
so that pairs of instructions can be executed in parallel.

E3: Counter 1 (Final version)
In the experiment E3 in Figure 6, the compiler does

not take advantage of our attempt to make it explicit to the
compiler where the indexes are to be updated.

C Code Assembly Code

void fir(const
 int h[],
 const int x[],
 int y[])
{
int n,m,accum;

n=nSamples-1;
while (n >= 0)
 {
 m = accum = 0;
 while(m<nTaps)
 {
accum +=h[m]*x[n-
m++];
 }
 y[n--]=accum;
 }
}

MOV #((_y+38)&0xffff),AR4
 MOV #39, AR1 ;
 MOV #19, BRC0
 RPTBLOCAL L6-1
 ; loop starts
L3:
 ADD #(_x&0xffff),AR1,AR3
 SUB #1, AR3, AR2
 MOV #(_h & 0xffff), CDP
 MOV #0, AC0
 RPT #15
|| MOV AC0, AC1
 ; loop starts
L4:
MAC *AR2-, *CDP+, AC1 :: MAC
*AR3-, *CDP+, AC0
 ; loop ends
L5:
 MOV AC1, *AR4
 SUB #2, AR4

|| MOV AC0,*AR4(short(#1))
 SUB #2, AR1
 ; loop ends
L6:
 return ; return occurs

Fig. 6. Experiment E3 (Counter 1 (Final version))

This is not surprising, because the compiler has
already translated the index arithmetic into efficient
addressing in the preceding experiments, and experiment
E3 does not yield lower cycle counts than experiment E2.

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 32

E4: Counter 2
A common optimization technique is to simplify array

index operations as shown in Experiment E4 in Figure 7.

C Code Assembly Code

void fir(const
 int h[],
 const int x[],
 int y[])
{
int n,m,t,nstart;

n=nSamples-1;
while (n >= 0)
 {
 m = accum = 0;
 nstart = n;
 #pragma UNROLL(1);
 while(m < nTaps)
 {
 accum += h[m++] *
 x[nstart—-];
 }
 y[n--]=accum;
 }
}

MOV #((_y+39)&0xffff),AR4
MOV #((_x+39)&0xffff),AR3
MOV #39, BRC0
 RPTBLOCAL L6-1
 ; loop starts
L3:
 MOV #(_h&0xffff),AR2
 MOV #0, AC0
 RPT #15
 ; loop starts
L4:
MACM *AR3-,*AR2+,AC0,AC0
 ; loop ends
L5:
 ADD #15, AR3
 MOV AC0, *AR4-
 ; loop ends
L6:
 return
 ; return occurs

Fig. 7. Experiment E4 (Counter 2)

We therefore simplified the indices in the inner loop as
follows:

m = accum = 0;
nstart = n;
while(m < N)
{
 t += h[m++] * x[nstart--];
}

To our surprise, this optimisation apparently confused

the compiler, which refuses to use dual-MAC instructions
and instead executes the inner loop as a single MAC
instruction. Oddly, the compiler also refuses to unroll the
loop, even faced with the pragma UNROLL meta-
instruction, which should force the compiler to perform
loop unrolling.

General observations

The compiler selected invalid parallel MACM
instructions when the "const-correct" fir(const int x[],
const int h[], int y[]) function was called in the initial
version of the C code. We believe that the compiler's
attempt to perform a single-instruction repeat loop using a
parallel dual-MAC instruction indicates that the compiler
is capable of recognizing latent optimisations in the C
code, and that the invalid instruction selection may be a
simple defect that is unrelated to the compiler's code
optimisation algorithms.

The experiments indicate that by emulating a "const-
correct" fir function by virtue of the forward store
optimisation, the compiler generates code with strong
performance, using a single-instruction, dual-MAC inner
loop.

The cycle count for this particular FIR filter algorithm
can be computed according to Eq. 6, where nTaps and
nSamples denote the number of filter taps and the number
of samples respectively:

=++= InnerLoopOuterLoopInitCC

() =+⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛+= nTapsnSamplesnSamples 3*
2

6*
2

4

 ()nTapsnSamples

+⎟
⎠
⎞

⎜
⎝
⎛+= 9*

2
4 . (6)

Cycle counts for BDTi1 and TI2 block FIR filter

benchmarks are shown in Eq. 7 and 8 respectively. Note,
that there will not be perfect correspondence between the
assembly code and the C code benchmarks, since the
assembly code implementations follow the TI and BDTI
Benchmark specification, while the C implementations do
not.

BDTi:

 ()nTapsnSamplesnTapsCCBDTi +⎟
⎠
⎞

⎜
⎝
⎛++= 2*

2
18 . (7)

TI:

()nTapsnSamplesCCTI +⎟
⎠
⎞

⎜
⎝
⎛+= 4*

2
32 . (8)

Results for LMS algorimh

The LMS algorithm consists of two inner loops: a FIR
filter loop as described in section IV and a coefficient
update loop plus an error calculation statement.

It is observed that presence of the second loop in the
algorithm and overwriting the coefficient array prevents
compiler from generating dual MAC instructions as should
be expected from the results in the preceding section.

Another observation made during experiments with
LMS algorithm is the loop invariant code motion
optimization. Although this optimization is included in
compiler optimization package –o3, in our LMS algorithm
case the compiler only does this optimization partially.

As seen in Figure 8 a), the expression in brackets (x[n]
- accum) does not change inside the loop, therefore could
be moved out of it. The value of mu is also constant, so the
multiplication by mu could be also moved out. However, in
this case only the subtraction is moved out of the loop.

In Figure 8 b), the redundant multiplication together
with subtraction is moved out from the loop manually. In
this case the compiler detects the possibility for parallel
instruction execution.

Conclusion
Concluding our experiments, we will now attempt to

evaluate the results of our approach in a broader
perspective.

The algorithm examined is a simple but fundamental
example used in many DSP applications. Consequently
only preliminary observations for the C55x platform
analysis can be made.

1 BDTI Benchmark (TM) results provided courtesy of Berkeley Design
Technology, Inc. (BDTI). Copyright (c) 2002 BDTI.
2 TI benchmarks are given in [16] and [17].

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 33

a) C Code a) Assembly Code

for (j = 0; j < nTaps;
 j++)
{

ADD #(_x&0xffff),T3,AR4
 MOV SP, AR3
 SUB AC0, *AR2, T2
 RPTBLOCAL L9-1
 ; loop starts

w[j]+=mu*(x[n]-
 accum)*x[n-j];
}

 MPYM *AR4-, T2, AC1
 MOV AC1, T1
 MOV *AR3, AC2
 MACK T1, #33, AC2, AC1
 MOV AC1, *AR3+
 ; loop ends
 SUB #1, T3
 SUB #1, AR2

b) C Code b) Assembly Code

error=mu*(x[n]-accum);

for (j = 0; j < nTaps;
 j++)
{

 SUB AC1, *AR4, AR2
 MOV SP, AR3
 ADD #(_x&0xffff),T2,AR2
|| MOV AR2, HI(AC0)

 MPYK #33, AC0, AC0

 RPTBLOCAL L9-1
|| MOV AC0, T1
 ; loop starts

 w[j] += error*x[n-j];
 }

 MOV *AR3, AC2
 MACM *AR2-, T1, AC2, AC2
 MOV AC2, *AR3+
 ; loop ends
 SUB #1, T2
 SUB #1, AR4

Fig. 8. Loop invariant code motion for LMS algorithm: a - performed
by compiler, b - performed manually

First we noted that, as expected, the compiler was
insensitive to alternate C code formulations such as index
or pointer specification for array references and for- or
while- specification of loops.

Then from the cycle counts reported it was obvious
that optimisation levels -o2 and –o3 encompassing the
automatic loop unrolling yield the first big leap in
performance and that the use of forward store/local
variables accounts for the next reduction. This was also to
be expected.

Eq. 6 shows that only 4 cycles are used for
initialisation and 6 cycles for (each) outer loop. This leaves
limited room for improvement, and using this result it
should be possible to identify when further optimisation
might not be warranted, i.e., to identify the point of
diminishing returns.

In future we will present a comparison of our results
with published BDTi and TI benchmark results.

The LMS experiment shows that the compiler does not
produce consistent results when asked to reproduce
optimisations on sub-problems. The cause of this
inconsistency remains unknown.

The proposed approach should be compared to other
options such as using third-party software or processor
specific compiler features. In such a comparison not only
code size and cycle count are relevant; development time,
cost, and risks as well as the potential for reuse, that is, the
constraints imposed by real applications, should also be
considered.

It seems fair to conclude that the proposed approach
has a potential for shorter development time while
maintaining low cycle counts and uncompromising code
portability.

Acknowledgement
We want to thank Jeff Bier, a founder and General

Manager of BDTi, for supplying information about BDTi
benchmark results.

References

1. Rajan S. P., Fujita M., Sudarsanam A., Malik S. Development of
an optimizing compiler for a Fujitsu fixed-point digital signal
processor. Proceedings of the Seventh International Workshop on
Hardware/Software Codesign (CODES'99). 1999. P.2–6.

2. Zivojnovic V., Velarde J. M. and Schlager C. DSPstone: A DSP-
oriented benchmarking methodology. Proceedings of ICSPAT'94,
October 1994.

3. Zivojnovic V., Velarde J. M. and Schlager C. DSPstone: A DSP-
oriented benchmarking methodology. Aachen University of
Technology. Technical report. August 1994.

4. Frederiksen A., Christiansen R., Bier J. and Koch P. An
Evaluation of Compiler - Processor Interaction for DSP Applications.
Signals, Systems and Computers. 2000. Vol. 2. P 1684-1688.

5. Hwang Y. and Hwang J. Efficient code generation for digital signal
processors with parallel and pipelined instructions. IEEE Workshop
on Signal Processing Systems Design and Implementation. 1997.
P.243-252.

6. Texas Instruments. TMS320C55x DSP Mnemonic Instruction Set
Reference Guide. April 2001. Spru374e.pdf. P.29-40.

7. Forward Store optimization
http://www.nullstone.com/htmls/category/\\fstore.htm

8. Eyre J. DSP Benchmarking Methodologies. Embedded Systems,
March 1998.

9. Texas Instruments. TMS320C55x Optimizing C/C++ Compiler
User’s Guide. June 2001. Spru103f.pdf. P.66-67.

10. Schneck P. B. A survey of compiler optimization techniques. ACM:
Association for Computing Machinery. 1973. P.106–113.

11. Texas Instruments. TMS320C55x DSP Programmer’s Guide. July
2001. Spru376a.pdf. P.64-70.

12. Berkeley Design Technology, Inc. web page, www.bdti.com
13. The Embedded Microprocessor Benchmark Consortium web page,

www.eembc.org
14. Texas Instruments. TMS320C55x DSP Programmer’s Guide. April

2000. Spru376.pdf. P.87-89.
15. Levy M. C compilers for DSPs flex their muscles. EDN Access.

1997.
16. Texas Instruments. TMS320C55x DSP Library Programmer’s

Reference. August 2000. Spru422a.pdf. P.62-65.
17. C5000TM Platform Overview – Power Efficient DSPs: Benchmarks,

Texas Instruments web page,
http://dspvillage.ti.com/docs/dspvillagehome.jhtml

B. Varnagirytė, A. Žemelis, O. Olsen, P. Koch, O. Wolf, E. Kazanavičius

Praktinis DSP kodo optimizavimo naudojant architektūrinį
kompiliatorių būdas

Reziumė

Nagrinėjamas diskretinių signalų procesorių (DSP) C-kodo
kompiliatoriaus naudojimo efektyvumas ir jo generuojamo kodo
optimizavimas, taip pat kodo generavimo technikos tinkamumas
konkrečiai architektūrai. Darbe pateikti įvairiems DSP uždaviniams
spręsti atliktų eksperimentų rezultatai.

Pateikta spaudai 2002 06 27

