
ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002. 

 34

Partitioning of DSP tasks to Kahn network 

A. Žvironas, E. Kazanavičius  

Kaunas University of Technology,Digital Signal Processing Laboratory, Department of Computer Engineering 

Studentų 50-214c, LT-3031, Kaunas, Lithuania, E-mail: {zviron,ekaza}@dsplab.ktu.lt 
 

Introduction 
Recently the number of digital signal processing 

(DSP) applications is increasingly growing. Modern 
extensive application domains are audio processing, 
digital communications, speech recognition, spatial 
positioning, etc. One essential feature of the mentioned 
applications is hard real time processing of real world 
signals. Occasionally chosen processing architecture may 
not satisfy processing time and hardware resource 
restrictions set by the application. Therefore, selection of 
application-dedicated architecture is needed. Architecture 
selection presents design-space-exploration task. This 
task in general is hardly solvable as there exist a lot of 
design alternatives to explore: number of different DSP 
algorithms, processing elements, design techniques and 
tools. Usual way to make architecture selection more 
effective is to build design methodology. The 
methodology should constrain in some way design space 
and use systematic approaches to solve problematic 
design aspects. 

A lot of different methodologies for the DSP 
architecture design have been proposed. Recent 
methodologies mainly are dedicated for the evaluation of 
DSP architectures from the application system level 
description. Most typical ones were proposed in the 
projects Ptolemy [11], Match [10], also the SPADE 
methodology [7], etc. These methodologies deals mainly 
with application and architecture models, however, they 
provide less attention to mapping these application model 
into real-time hardware prototype. 

This paper proposes a methodology for mapping the 
DSP task into different processing architectures. This 
methodology includes task specification, algorithm 
analysis, functional partitioning and mapping the task 
presented by Kahn network into the hardware-prototyped 
DSP architecture. The mapping process is illustrated with 
the multi-channel correlation processing task that is 
common in such applications as various measurements, 
sonar and radar positioning [1,4]. 

Methodology of mapping a DSP task into 
processing architecture 

Overview of DSP architectures. DSP processing is 
possible in several different types of devices. Most 
applicable for this purpose are DSP processors with 
different cores, versatile programmable logic devices 
(FPGA, CPLD) [3,13,14], also heterogeneous 
architectures that contain several different type devices 
(Fig.1). 

For multi-channel application most suitable are 
multiprocessor systems consisting of several processors 
or processors with several cores e.g. TMS320C80 and 
TMS320C6000. These processors can execute parallel 
algorithms and usually execute arithmetic operations 
(accumulation and multiplication) in a single machine 
cycle. Therefore, DSP processors can execute basic DSP 
functions such as filtering, correlation, FFT [4] in real 
time. A lot of ready-to-use routines and architectures of 
basic DSP operations exist with the known execution 
time and hardware resources [8]. 

Lately, the various modifications of programmable 
logic devices (PLD) became applicable for DSP 
applications. For example, FPGA Virtex-II Pro by Xilinx 
[13] provides chip hardware resources for 
implementation of 556 18x18 bit multiplication blocks. 

Heterogeneous architectures (Figure 1) generally 
contain the microcontroller, commutation network and 
several functional units (FU), such as various DSP 
processors and FPGA. Such architectures mostly give use 
for the applications featuring simultaneously several 
different information processing modes e.g. signal 
processing, control, data transmission, etc. 

 

Micro-
controller Comutation network

FU FU FU

FU FU FU

FU – functional unit  

Fig. 1. Heterogeneous architecture 

Methodology. We propose the methodology for DSP 
task mapping into processing architecture (Fig.2). This 
methodology is considered to assist DSP system 
designers to choose the architecture rational for their 
application. In the first step designer must describe the 
task in imperative or Nested Loop Program (NLP) 
computation model, such as C or Matlab semantics. The 
manual derivation of parallel description from sequential 
program is difficult and tedious task. Some special 
compilers are used to form instruction level parallelism 
from the original specification [5]. 

For parallel processing tasks more suitable 
specifications are computation models of process network 
type [2,6]. Process network describes the application as a 
network of firing concurrent processes. In order to find 
concurrent processes we suggest decompose the task into 
the simplified graph of dependencies (Fig.3). 



ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002. 

 35

Algorithm analysis

Functional partitioning

Algorithm mapping into
architecture

Application description /
specification C, Matlab

Compiler

Kahn process networkF={f1,f2,...,fn}

G(V)

V – netwok synthesis
      parameter

F – set of nodes

Architectures

DSPx Hetero-
geneous

FPGA,
CPLD

Evaluation

Methodology

G(V) – network synthesis
function

 

Fig. 2. Methodology of mapping the DSP task into the architecture 

Consequently, this graph has to be overlaid by the Kahn 
process network model. 

 

f3

f1

f2
f4

X

Y
FiX Y

Decomposition
X

X  

Fig. 3. Decomposition example 
 

Kahn network [7] describes computation model in 
which computation processes combined with unbounded 
FIFO channels form a network. The action of any process 
node is driven by input data and stops if at least one of 
input channels becomes empty. Writing of the process 
data into the output channel is not blocked. 

Since the DSP task is assumed to be multi-channel, 
so the number of channels is defined already in the task 
specification step. Compiler makes functional 
decomposition. Next, the decomposition result is used by 
Kahn network synthesis function )(VG , where V 
presents the network synthesis parameter vector. It 
contains the parameters ,NiFMV ii 1    ,, =>=< , where 

iM  is the number of i-th of architecture channel, Fi is the 
set of Kahn network nodes { }lfff ,,, 21 K . Each node is 
written as the parameter vector 

>=< lll
ko
l

ki
ll kokiopsf ,,,, , where oi - the operation 

type, kil – number of inputs, kol – number of outputs, ki
ls  

- depth of the input FIFO, ki
lp  - depth of the output FIFO 

(Fig.4). 
In the next design step the network synthesis function 
)(VG  has to be mapped to the architecture, which is 

implemented as set of Kahn processors. The Kahn 
processors architecture is described later. 

The last step is evaluation of the task in the 
architecture chosen by the designer. This step is 

supported by the database that contains the information 
about estimations of arithmetic and basic DSP operations 

f1 f1

sl
1=2, pl

1=1, ol="+",
 kil=1,kol=1

sl
1=1, sl

2=1,pl
1=1,

ol="+", kil=2,kol=1
 

Fig. 4. Examples of Kahn network node 

in different architectures. The evaluation step also should 
include the estimator having the responsibility to choose 
the appropriate architecture for the task. The estimator 
checks fulfillment of the following conditions: 

)(&)(&)( 000 CCTT ≤≤ε≤ε , where T is the execution 
time in the architecture, C is the architecture resources, ε  
- processing error, 0ε , T0, C0 are the corresponding 
constraints of the application [15]. The estimator provides 
the inference whether the chosen architecture is suitable 
for the task. In the case of the unfavorable inference the 
designer has to check other design space alternatives. 

Description of Kahn processor. For the mapping of 
the Kahn network into the architecture the designer must 
describe the architecture like shown in Fig.5.  

Control system

Architecture
1 FIFO FIFO

KP

M FIFO FIFO
KP

L

Comutation network

Kahn Processor

f2f1 fn

Source Sink

Input
port

Output
port

 

Fig. 5. Kahn processor architecture 

The architecture may contain one or multiple Kahn 
processors (KP) - that depends on the available hardware 
resources in the architecture. Multiple KP are effective 
for implementation of multi-channel DSP tasks or single-
channel tasks that are computation-intensive and need to 
be spread over several processors. The Kahn processor 
consists of set of Kahn network nodes { }lfff ,,, 21 K  that 
designate arithmetic operations <+,–,*> and basic DSP 
operations. As mentioned earlier, the network synthesis 
function )(VG  composes Kahn process network. The 
network nodes f are interconnected by bounded FIFO 
channels with different depths. Kahn processors are 
managed by the control system that operates according to 
the parameter vector V. The parameter iM  indicates to 
the control system the KP that should be fired. 

This approach allows effective evaluation of the 
architecture suitability to the application. Since the 
descriptions of KP in the architecture are identical, the 



ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002. 

 36

estimated processing time in a single KP lets to predict 
the processing time of the task assigned in multiple KP. 

Case of multi-channel correlation processing task 
Generally, correlation processing task fits into the 

functional structure shown in Fig.6. It contains M  signal 
processing channels each of them having preprocessing 
function prepF , DSP function cfF  for computing cross-
correlation function (CCF) and post-processing function 

postF . Usually prepF  designates analog filtering and 

digitization of the signal and postF  may cover a wide 
spectrum of functions such as peak detection, envelope 
extraction, averaging or sub-sample interpolation. 
Variables Mty ..1)(  designate continuous real time input 

signals, Mny ..1][  - preprocessed digital samples, 
M

xy nr ..1][  - CCFs between Mny ..1][  and the reference 

signal Mnx ..1][ , and Mz ..1  - result obtained after the post-
processing of the CCF. 

 

Fprep

Fprep

Fprep

Fpostp

Fpostp

Fpostp

Fcf

Fcf

Fcf

][ 11
TNx

][ 22
TNx

][ M
T

M NxM M

)(1 ty

)(2 ty

)(tyM

1z

2z

Mz

][1 ny

][2 ny

][nyM

][1 nrxy

][2 nrxy

][nr M
xy

So
ur

ce

Si
nk

Preprocessing PostprocessingCorrelation
processing

 
Fig. 6. Structure of the multi-channel correlation task 

Computation of CCF in many applications requires a 
significant, sometimes a major part of overall DSP time 
and hardware resources. A reasonable example of such an 
application is multi-channel correlation processing in the 
ultrasonic vision system for a mobile robot [12]. 
Therefore, the further demonstration of the methodology 
shifts to mapping of the multiple cfF  into DSP processor 
architecture and the performance evaluation of the 
architecture. 

Analysis of CCF computation algorithms. There 
exist several different algorithms to compute CCF [1,4,9]. 
Most common are the straightforward algorithm (A1) and 
the fast algorithm (A2) based on the fast Fourier 
transform [1,4,9]. The first algorithm computes the CCF 
of two sampled sequences xi and yi, each of length N, 
according to the following formula [1,4]: 

1..0   ,][][1][
1

−∈+⋅= ∑
=

Nkkixiy
N

kr
N

i
xy . (1) 

If N is sufficiently large (N>128 [4]), the second 
method A2 includes less arithmetic operations and is 
faster than the direct method A1. The A2 method is 
described by the expression [1,4]: 

)]()([1 *1 yFFTxFFTFFT
N

rxy ⋅= − , (2) 

where FFT  denotes the fast Fourier transform (FFT)and 
1−FFT  - the inverse FFT. In fact, this method requires 

computation of three FFTs and complex multiplication of 
signal spectrums. These DSP operations can be scheduled 
in the architecture differently and give different values of 
CCF computation time and hardware resources. 

Example of CCF algorithm mapping. For this 
example the method A1 was taken because it can be 
transformed into series of parallel forms. Its algorithm is 
similar to the FIR filter’s algorithm and described in 
Matlab by the expression: 

for i=1:n;
 r(i)=0;
 for j=i:m;
  r(i)=r(i)+y(j)*x(j-i+1);
 end;
end;  

This script corresponds to the CCF computation with 
the shift to the right. The CCF part with the shift to left 
can computed in much similar way. 

After the decomposition we get the network synthesis 
function )(VG . It forms the Kahn process network that is 
shown in Fig.7. It is seen from the Kahn network that 
several values of the CCF can be computed in different 
channels. 

...

...
y1

x1y1

x1 y2

x2y2

x2 y3

x3y3

x3 y4

x4y4

x4 ym

xmym

xm

r1
1

...
y1

x2y1

x2 y2

x3y2

x3 y3

x4y3

x4 ym-1

xmym-1

xm

r2
2

ym-n+1

xmym-n+1

xm

rn
M

Number of channels - 1
Kahn Processors -     M

Number of channels - M
Kahn Processors -      1

Kahn network node

FIFO channels
   by 1 place

1

2

M

 Fig.7. CCF computation fragment in Kahn network 

After the algorithm was decomposed down to 
arithmetic operations we evaluate an execution time. The 



ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002. 

 37

experiment was based on the Motorola DSP5630x [8] 
processor that executes multiply-accumulate operation 
within 83 nanoseconds at 60 MHz clock cycle. 
Initialization cycles were not taken into account. If the 
CCF is computed in a single channel with the M Kahn 
processors the processing time is equal: 

ns][)1(83
1
∑
=

+−⋅=
M

i
imT , Zm∈ , (3) 

where Z is the set of positive values. 
If x and y arrays contain 1024=m  samples each (at 

this case m = M), then s044.0=T . 
In other case, if there are assigned single KPs in each 

of several channels the CCF several values can be 
simultaneously processed in different channels. Then the 
execution time equals to: 

ns][83 mT ⋅= , Zm∈ . (4) 
Overall CCF processing time is equal to the time of 

the CCF first value computation. For example, if 
1024=m  samples, then ms085.0=T . 

Conclusions and future challenges 
This methodology was suggested with the aim to 

ease DSP task mapping into the processing architecture 
and evaluate the application-to-architecture match. 
Following the methodology, the DSP task is described by 
C or Matlab script and then compiled into the Kahn 
network synthesis function, which later used to compose 
the task-equivalent Kahn network. Each node in the 
network designates arithmetic or basic DSP operations – 
the granularity depends on the particular DSP algorithm 
used. The architecture evaluation step is needed to make 
the inference whether the chosen architecture is suitable 
for the task. In the case of the unfavorable inference the 
designer has to check other design space alternatives. 

Future works should address the following 
challenges: 

• Implementation of the tool for the automatic 
decomposition and Kahn network composition. 

• Building the database for the architecture 
estimator. 

References 

1. Bendat J. S., Piersol A. G. Engineering Applications of 
Correlation and Spectral Analysis. John Wiley & Sons. 1980. 

2. Edwards S., Lavagno L., Lee E. A. and Sangiovanni-Vincentelli 
A. Design of Embedded Systems: Formal Models, Validation and 
Synthesis. Proc. of the IEEE. 1997. Vol. 85. No.3. P.366-390. 

3. Ercegovac M. D., Lang T., Moreno J. H. Introduction to Digital 
Systems. John Wiley & Sons. New York. 1999. 

4. Ifeachor E. C., Jervis B. W. Digital Signal Processing: A Practical 
Approach. Addison-Wesley. 1993. 

5. Kienhuis B. Matparser: An Array Dataflow Analysis Compiler. 
Technical report. Department EECS, University of California at 
Berkeley, Cory Hall 524, Berkeley, California, 94720, USA, Feb. 
2000. 

6. Lee E. A., Parks T. M. Data flow process network. Proceeding of 
the IEEE. May 1995. Vol. 83. No.5. P.773-799. 

7. Lieverse P., Van der Wolf P., Deprettere Ed., Vissers K. A 
Methodology for architecture exploration of heterogeneous signal 
processing systems. Proc.1999 IEEE Workshop on Signal 
Processing Systems (SiPS’99). 1999. P.181-190. 

8. Motorola. DSP56300 Family Manual. 24–bit Digital Signal 
Processor. Revision 2.0. August 1999 

9. Oppenheim A. L., Shafer R. W. Discrete-time signal processing. 
Prentice-Hall, 1999. 

10. Periyayacheri S., Nayak A., Jones A., Shenoy N., Choudhary A. 
and Banerjee P. Library Functions in Reconfigurable Hardware 
for Matrix and Signal Processing Operations in Matlab. Proc. 11th 
IASTED Parallel and Distributed Computing and Systems 
Conference (PDCS'99). Cambridge, MA. November 1999. 
(http://www.ece.nwu.edu/cpdc/Match/papers.html). 

11. Pino J. L., Ha S., Lee E. A. and Buck J. T. Software Synthesis for 
DSP Using Ptolemy. Journal on VLSI Signal Processing. January 
1995. Vol.9. No.1. P.7-21. 

12. Venteris R. Exploration of DSP architectures in ultrasonic 
measurement applications. Ultragarsas, Nr.1(42). KTU. Kaunas. 
2002. 

13. Xilinx, Inc. Virtex-II Pro Platform FPGA Handbook. 
(http://www.xilinx.com/publications/products/v2pro/handbook/) 

14. Xilinx, Inc. The Programmable Logic. Data Book. 1996. 
15. Ясинявичюс Р. Ю. Паралелъные пространственно-временные 

вычислителъные структуры. Вилънюс: Мокслас. 1988. 

A. Žvironas, E. Kazanavičius 

SSA uždavinio padalijimas į Kahn’o tinklą  

Reziumė 

Aprašoma daugiakanalio uždavinio paskirstymo į skirtingas 
skaitmeninių signalų apdorojimo (SSA) architektūras metodika. Ji 
apima uždavinio specifikavimą, algoritmo analizę, funkcinį padalijimą 
ir uždavinio paskirstymą į architektūroje realizuotą Kahn’o tinklo 
prototipą. Paskirstymo procesas pateikiamas daugiakanaliu koreliacijos 
apdorojimo uždaviniu, kuris randamas tokiuose taikomuosiuose 
uždaviniuose kaip įvairūs matavimai, radiolokacinis ir sonarinis 
padėties nustatymas. 
 
 

Pateikta spaudai 2002 07 8 
 


