
ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 38

Concepts of high level synthesis using SystemC

K. Pakalniškis, E. Kazanavičius

Kaunas University of Technology, Digital Signal Processing Laboratory, Department of Computer Engineering,

Studentu 50, LT 3031 Kaunas, Lithuania, {ekaza,pakal}@dsplab.ktu.lt

Introduction

Real time applications impact the design of embedded
systems with many different types of constraints, including
timing, size, weight, power consumption, reliability,
accuracy and cost.

Current methods for designing embedded systems
require to specify and to design hardware (HW) and
software (SW) separately. A specification is often
incomplete and written in different languages are send to
the hardware and software engineers. Partition of SW /
HW is designed a priori. Generally software is used for
features and flexibility and hardware is used for
performance. Any changes in this partition may extend a
redesign cycle and time to market.

Digital Signal Processing (DSP) [1] is one of the
fastest growing fields in modern electronics used in us any
areas. Application areas include: image/video processing,
speech-audio processing, telecommunications, biomedical
applications and others.

Functional specification for adaptive systems is mostly
written in languages like C or C++. This software model
has no timing, size and cost constraints information. The
systems implementations models mostly are written in
hardware description languages like VHDL, Verilog.

In Fig.1 non unified system design flow is shown. The
redesign gap between functional verification to
architectural verification is covered by high level
synthesis. Present high level synthesis systems inputs
C/C++, HDL behavioural and generates register transfer –
RT level HDL description. The system is non unified.

Functional verification

Functionaly
correct?

Architectual
verification

ReDesign

Architectualy
correct?

Y

Y

N

N

Implement your design

Design Capture

Fig. 1. Non unified design flow

For system level specification on 1999 leading EDA,
IP, semiconductor systems and embedded software

companies announced the "Open SystemC Initiative" of a
C++ modeling platform called SystemC [7].

SystemC is the standard design and verification
language built in C++ that spans from concept to
implementation in hardware and software. Designers
design and verify using SystemC and standard ANSI C++.

In this paper we describe the concepts of a high level
synthesis using adaptive system models designed with the
SystemC. This concept makes the unified system design
methodology starting from functional verification to
synthesis and architectural verification.

Design models of the system
Each system model could be described in different

type of description. Depending on the model description
may be impractical or meaningless. One of the system
exploration charts (Y-chart) is shown in Fig.2. The Y-chart
has three domains of design description: behavioural,
structural and physical. Each domain has many levels of
abstraction. The design process is represented step by step
refinement in all the three domains from the outer level to
the center.

FSM
Structural Controling
Structural Datapath

FSM
Behavioral Controling

Structural Datapath

Physical Domain

Behavioral Domain Structural Domain

Boards

Chips

Cells

Transistor
layout

Transistor

Gates

Registers
ALU, mux’s

Processors
MemoriesSpecification

RTL
Behavior

Boolean
expresions

Transistor
function

SFSMD
Behavioral

FSMD
Behavioral

Fig. 2. System exploration Y-Chart

The Super Finite State Machine with Datapath

(SFSMD) is the most abstract level of description. The
whole algorithm can be considered to be the SFSMD with
one superstate. But generally, the algorithm is divided into
any number of parts of any size. These parts are the

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 39

superstates. The basic difference between the two models
is, that SFSMD does not restrict the size of the algorithm
parts assigned to a state, whereas FSMD does. This is,
because SFSMD does not correspond to hardware at all,
whereas the states of FSMD correspond to clock cycles.

Behavioural description
For behavioural description, the algorithm, which is

chosen to be implemented in hardware must be correct and
executable on any platform, but no restrictions concerning
a special structure apply. The whole algorithm could be
assigned to one single big superstate, but in most cases
several superstates are recommended. When describing the
algorithm in a high level programming language, it is
typical to map the procedures to superstates. Fig.3 shows
an example with several superstates.

while(1) {
 for(int i=15; i>=0; i--) {
 acc += shift[i] * coefs[i];};

 for(int i=14; i>=0; i--) {
 shift[i+1] = shift[i]; };
}

Filter

Behavior
sample

result

Initialise coefs.

filter x

compute error

update coefs.

Fig.3. SFSMD of adaptive algorithm (left - representation, right -
description)

Structural description
A structural description is not used for this model.

Hardware allocation and scheduling are not done at this
time. Therefore a structural description just could be
something like a general purpose computer which is
capable of executing the appropriate program which is
stored in some memory (Y- Chart). This is not helpful for
implementing a adaptive algorithm.

Finite state machine with datapath - FSMD
In the model Finite State Machine with Datapath

(FSMD) scheduling is performed. That means the
algorithm is divided into small pieces which are assigned
to cycles using cycle based states [6]. FSMD- cycles will
be mapped to the cycles of the hardware clock. However
hardware cycle time is not finally set yet. In each state two
things are done:

• The operation scheduled to this state is executed
within one clock cycle.

• The next state for the next clock cycle is
determined.

Behavioural description

The FSMD Behavioural description is shown in figure
4. The Behavioural description is preferred for this model,
because of better readability. It clearly illustrates how the
code pieces are scheduled in the states. It is located at the
RTL Behaviour point of the Y-Chart. The term ''RTL''

(Register Transfer Level) indicates the cycle accuracy of
this description and the corresponding register transfers of
the final hardware.

 switch(state) {
 case reset_s:
 ….
 break;
 case first_s:
 acc += shift[7]*coefs[8];
 acc += shift[6]*coefs[7];
 acc += shift[5]*coefs[6];
 if(in_valid.read()==true) {
 state = second_s; };
 state_out.write(1);
 break;

Filter

Behavior

sample result

ci=0

n= ci*xi

e=y-n

ci+1=ci+2uexi-1

Fig.4. FSMD of adaptive algorithm (left - representation, right -
description)

The variables of this description will be assigned to

final hardware (register, memory, input, output, wires). A
structural description is not used for this model.

FSM controlling data path
The system is described on the same refinement level

as the previous model. The FSMD is splitted into a control
part, described by a Finite State Machine (FSM) without
datapath and a separate datapath. The control block
controls the execution of the operations while the datapath
actually performs them.

Depending on the current state, the control block sets
control signals for the datapath. These signals tell the
datapath, how operations to be processed. The datapath can
inform the control block about special results. Depending
on the input signals and the current state, the control block
determines the next state, which becomes valid in the next
clock cycle. The separation into these two blocks offers
new possibilities - each can be independently described
behaviourally or structurally.

Behavioural description
A pure behavioural description of this model is used

only for simulation, not usable for synthesis. When trying
to describe data path behaviorally this would generate a
second state machine for the data path (see Fig. 5). The
model FSMD is used instead.

Behavioural - structural description
The big advantage of the split model is the possibility

of still using a behavioral description for the control, while
describing the datapath structurally (Fig. 6). The first block
illustrates the states in accordance with the Register
Transfer Level while the second contains the data
structure: memory, registers, ALU and etc.

This description is less comprehensive than a
behavioural description of the model FSMD, but this
approach to the final architecture has to be used. Physical
hardware finally is obtained by implementing a structural
description. Therefore we finally need a pure structural
description. The data path, which is by far the largest part
of the design, is structural already.

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 40

 switch(state) {
 case reset_s:
 ….
 break;
 case first_s:
 if(in_valid.read()==true) {
 state = second_s; };
 state_out.write(1);
 break;

 switch (state) {
 case 1 :
 ….
 break;
 case 2 :
 acc += shift[7]*coefs[8];
 acc += shift[6]*coefs[7];
 acc += shift[5]*coefs[6];
 break;
 case 3 :
….

Finite
State

Machine

Data
Path

Filter

sample result

Finite
State

Machine

Data
Path

Filter

sample result
 acc += shift[10]*coefs[11];
 acc += shift[9]*coefs[10];
 acc += shift[8]*coefs[9];

 acc += shift[7]*coefs[8];
 acc += shift[6]*coefs[7];
 acc += shift[5]*coefs[6];

 acc += shift[4]*coefs[5];
 acc += shift[3]*coefs[4];
 acc += shift[2]*coefs[3];

s1

s2

s3

state1

state2

state3

Fig. 5. FSM Controlling Data path. Behavioural. (left - representation, right - description)

 switch(state) {
 case reset_s:
 ….
 break;
 case first_s:
 if(in_valid.read()==true) {
 state = second_s; };
 state_out.write(1);
 break;

SC_CTOR(datapath) {
SC_METHOD(mac);
sensitive <<data<<data_ready;
 SC_METHOD(reg);
sensitive << clk << reset;
 SC_METHOD(reg_out);
 sensitive << clk << reset;}

Finite
State

Machine

Data
Path

Filter

sample result
Data
Path

Filter

sample result

Finite
State

Machine

state1

state2

state3

re
g

re
g

M
A

C

Fig. 6. FSM Controlling Data Path. Behavioural-Structural. (left - representation, right - description)

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 41

SC_CTOR(control) {
SC_METHOD(next_state);
sensitive <<state<<input_data;
 SC_METHOD(out_logic);
sensitive << state;
 SC_METHOD(state_reg);
 sensitive << clk << reset;}

SC_CTOR(datapath) {
SC_METHOD(mac);
sensitive <<data<<data_ready;
 SC_METHOD(reg);
sensitive << clk << reset;
 SC_METHOD(reg_out);
 sensitive << clk << reset;}

Finite
State

Machine

Data
Path

Filter

sample result

Finite
State

Machine

Filter

sample result

Next
state

state
reg

out
logic

input_data

Data
Path

re
g

re
g

M
A

C

Fig. 7. FSM Controlling Data Path. Structural-Structural. (left - representation, right - description)

The behavioural control description is simple and can
be converted to a structural description by a simple
synthesis tool. The split model with behavioural control
and structural datapath is a good basis for synthesis tools
which have some intelligence about how to convert
behavioural description into a structure.

Structural description

Synthesis tools with no intelligence may need a pure
structural description. In Fig.7, even the control part is
structural. The control block shown here implements the
control FSM too.

A pure structural description should be used only if the
synthesis tool or the input language does not permit a
behavioural description of the control block.

Synthesis flow
The high level synthesis is transformation from a high

level description of the system into a lower level called the
Register Transfer - RT level [9]. The RT components are
interconnected and satisfy the functionality and provides
some constraints such as quantity of computational
resources and timing information, etc., number of cycles to
perform the algorithm.

The Y-chart (see Fig.1) dotted line circles are the
abstraction levels of the system design. Outer level is most
abstract level and down to center is more granular system
design. The system design chart has three domains.

Specifying definition of high level synthesis we
assume, it is transformation from Behavioural domain
most abstract level (SFSMD – behavioural description)
system description into Structural domain lower abstract
level – RT level (FSM controlling datapath – structural
description) system description.

High level synthesis consists of three major parts:

• Scheduling. Scheduling partitions the behavioural
description into time divided algorithm pieces.

• Allocation. Allocation determines the number of the
resources (memory, functional units- FU, buses).

• Binding assigns the variables to memory units,
operations to FU and interconnections to buses.

reg

reg

MAC

reg

reg

MAC

Memory

C
on

tro
l U

ni
t

Datapath

while(1) {
 for(int i=15; i>=0; i--) {
 acc += shift[i] * coefs[i];};

 for(int i=14; i>=0; i--) {
 shift[i+1] = shift[i]; };
}

 acc += shift[10]*coefs[11];
 acc += shift[9]*coefs[10];
 acc += shift[8]*coefs[9];

 acc += shift[7]*coefs[8];
 acc += shift[6]*coefs[7];
 acc += shift[5]*coefs[6];

 acc += shift[4]*coefs[5];
 acc += shift[3]*coefs[4];
 acc += shift[2]*coefs[3];

Fig. 8. Basic steps of high level synthesis

ISSN 1392-2114 ULTRAGARSAS, Nr.2(43). 2002.

 42

Abstract steps of synthesis methodology are shown in
Fig. 8. The first step is input of the system described as
SFSMD (behavioural). The next step is scheduling. The
algorithm is partitioned into pieces which are assigned to
cycles using cycle based states. FSMD – cycles will be
mapped to the cycles of hardware. The last step is
allocation and binding. Now is deciding the number of
resources necessary to fulfil timing of the previous model
(FSMD behavioural description). The resources have to be
banded. The variables, operations, interconnections of
partitioned pieces of the algorithm assigns to storage units,
FU and buses.

Discussion and future challenges
Various system models described using SystemC are

presented in the chapter 2. The models SFSMD, FSMD
and FSM Controlling Data Path presents different kind of
information.

The three basic steps of synthesis strategy are
presented in the chapter 3.

The concepts presented in the chapters shows
possibility to use the SystemC, the classes of C++ to
represent all needed steps in a high level synthesis. Using
the unified environment for system specification,
verification and synthesis eliminates gap between the
designers and tools.

These challenges to explore and create the real high
level synthesis system, are very useful for an adaptive
computing.

Conclusions
The paper has shown the concepts of high level

synthesis using SystemC. This concepts allows use the
same environment for all steps in the system design,
beginning from functional verification to architectural
exploration. The high level synthesis system is based on
the same environment as other system design steps,
eliminates transformations from one description languages
to another and simplifies the synthesis process.

References

1. Ifeachor E. C., Jervis B. W. Digital signal processing: a practical
approach. Addison Wesley. 1993. P.541-576.

2. Semeria L., Ghosh A. Methodology for Hardware/Software
coverification in C/C++. Proceedings of Asia and South pacific
design automation conference. Yokohama, January 2000. P.405-408.

3. Economakos G., Oikonomakos P., Panagopoulos I. Behavioral
synthesis with SystemC. Proceedings design, automation and test in
Europe conference 2000. Munich, Germany. March 13-16, 2001.
P.21-25.

4. Gerlach J., Rosenstiel W. System level design using the SystemC
modeling platform. Workshop on system design automation. Rathen,
Germany. March 2000. P.185-189.

5. Mueller W., Ruf J., Hoffmann D. The simulation of SystemC. In
Proceedings of design automation and test in Europe (DATE), IEEE
Computer Society Press, Los Alamitos. Munich, March 2001.

6. Zhao Sh. RTL Modeling in C++ , UC Irvine, Technical Report
ICS-01-18 April 30, 2001.

7. Functional Specificatio for SystemC. Synopsys, Inc., CoWare, Inc.,
Frontier Design, Inc. and others. Final Version2.0-M January 17,
2001.

8. Describming Synthesisible RTL in SystemC. Synopsys, Inc, Version
1.0 May, 2001.

9. Gajski D., Dutt N., Lin S., and Wu A. High level synthesis:
Introduction to chip and System design. Kluwer Academic
Publishers, 1992.

K. Pakalniškis, E. Kazanavičius

SystemC taikymo aukšto lygio sintezei koncepcija

Reziumė

Darbe pateikta aukšto lygio sintezės, atliekamos naudojant
aparatūros aprašymo kalbą SystemC, koncepcija. Pateiktos projektavimo
metodologijos skaitmeninio filtravimo uždavinių klasei.

Pateikta spaudai 2002 07 5

