
ISSN 1392-2114 ULTRAGARSAS, Nr.4(45). 2002.

 43

Design and analysis of DSP systems using Kahn process networks

J. Čeponis, E. Kazanavičius, A. Mikuckas

Digital Signal Processing Laboratory

Kaunas University of Technology

Introduction
Currently signal processing systems are designed using

various methods and tools [1]. In DSP systems design and
implementation very important factor is project realization
time. Various tools and methods are created to reduce this
time. Kahn process network model, discussed in this paper,
is one of such methods [4].

While analyzing current situation in system design
using Kahn process networks one can notice that designers
concentrate on one problem or problem class. Ptolemy [3],
Artemis and Compaan projects were analyzed, which use
Kahn process network model in system design. In these
projects network model is tightly related with the system
being modeled.

System’s Kahn process network can be modeled using
personal computer. This helps in finding critical network
operation points. Performance can be improved
dynamically changing network parameters.

Hardware systems (embedded systems, programmable
logic) dedicated to a particular problem class are used to
minimize processing time. Kahn process network
implementation in the hardware system would help in
verifying efficiency of the solution in the particular
situation [6].

Kahn process network
The Kahn process network is a computation model in

which many concurrent processes can be executed
simultaneously. This model is presented as an oriented
graph, where every node represents a process and every arc
represents an unbounded FIFO buffer used for data
transmission [2].

Kahn process network can be described as a graph
G=(N, D, F), where
• N is a set of vertexes, which correspond to network

nodes;
• D is a set of arcs, which correspond to network

channels;
• F is a function, which determines an ordered pair of

vertexes (network nodes)),(ji nn , Nnn ji ∈,
corresponding to every arc of the graph.

n1

d213 d121 d1

n22

n3

n21
d3

d223 d122

Fig. 1. Kahn process network as a graph

Network nodes are connected with unidirectional FIFO
channels thus),()(ji nndF = is an ordered pair.

Producer node writes and inserts data into the queue,
while consumer node reads the data and removes it from
the queue. This is a natural model for describing signal
processing systems where infinite streams of data samples
are incrementally transformed by a collection of processes
executing in sequence or in parallel.

Reading from an empty input channel is blocked.
Writing into the channel is never blocked because of the
unbounded channel length. In this model computation
results do not depend on the execution order of the nodes.
The only thing that depends on the execution order is the
computation time.

The node trying to read from an empty channel is
blocked. The node cannot check to see whether the channel
is empty before trying to read from it. While being blocked
the node does not do any other operation including reading
from the other channels if they exist. Because of the
determinate nature of the computation model, computation
result is independent of the execution order: Kahn process
networks can be executed sequentially or in parallel with
the same outcome.

There are two possible methods for network
scheduling while implementing Kahn process network in
the system where concurrent node execution is not possible
[5,7]:

1. Static: the order of nodes execution is specified
before network execution.

2. Dynamic: nodes execution order is changed
during network execution according to the
situation.

While implementing the network scheduling one must
carefully consider the operations of the network nodes and
especially the path of data transmission. Static network
scheduling method is not suitable for sequential
computations. Static network scheduling has no sense
when we are executing nodes concurrently. It is important
only when two nodes share the same computation
resources.

While implementing dynamic network scheduling one
must consider current network situation [4]. One of the
most important parameters is the amount of data in
channels. Considering this, network node is chosen which
performs data reading and computations. This ensures
network operation efficiency and memory and computation
resources optimization.

Network modifications
Observing network operation. Network channels

operation parameters are being observed and analyzed

ISSN 1392-2114 ULTRAGARSAS, Nr.4(45). 2002.

 44

during the initial stage of system modeling. In this stage it
is important to simulate network operation without
performing any calculations that would not let evaluate
network efficiency.

Observer is assigned to each network channel. The
observer observes, analyzes and saves these parameters:

• channel length and state;
• data stream intensity;
• network operation changes when channel length is

reduced or increased.
Initially, data transmission efficiency is evaluated and

used memory amount is optimized. Then network nodes
are analyzed. Considering the node’s operations the node
observer observes, analyzes and saves these parameters:

• execution time and operations quantity;
• node’s execution and idleness time;
• node’s priority;
• the state of input and output channels.
Data packet path through the network is observed

aiming to find optimal network operation parameters:
channels lengths and nodes priorities.

During network modeling all channels and nodes must
be observed. General observer is also required.
Observation functions are implemented in channels and
nodes themselves. Node can save the information about
reading and writing operations performed. From this we
can judge about channel occupation. Saving information
about intensity of operations performed helps in
calculating needed resources.

On the contrary to traditional Kahn process network
model the presence of data in the channel is checked.
Node checks to see whether there is a data packet prepared
in the channel before reading. In final implementation
(when system is fully tested) data observation and buffer
checking function can be turned off.

Memory allocation. Traditional Kahn process
network model has unbounded FIFO channels. In real
systems there is bounded amount of memory. Thus we
need to ensure proper memory allocation among all
channels.

Lets say we have a network with K channels and we
can allocate M amount of memory in this network. The
possible strategies for memory allocation are:

• all channels get M/K amount of memory;
• channel length is estimated according to expected

data stream intensity (length of all channels does
not exceed M);

• channel length is alternating according to network
state.

First two memory allocation strategies are static.
Memory is allocated to channels in the beginning and it’s
amount allocated to each channel does not change. The
third memory allocation strategy is dynamic: memory is
allocated during network operation. Initially channels are
allocated M-R memory amount (M – all the memory we
have; R – memory dedicated for increasing channel
length). Initial memory allocation can be twofold:

• all channels get the same memory amount;
• channels are allocated different memory amounts

according to expected data stream intensity.

During network operation channels occupation is
observed. If channel gets full, its length is increased.
Amount of memory allocated to the channel also depends
on the data type (integer, real, array, pointer etc.)
transmitted through this channel. The amount of allocated
memory must be proportional to the length of the data
packet being transmitted. Channel is implemented as a
FIFO buffer thus we need to save the information about the
order of the records.

The amount of memory required in the system is:
)(** ynxmX mem += , (1)

where m – number of channels, x – maximum channel
length, n – data packet length, y – amount of memory
needed for saving the pointer to the next element.

During system operation memory allocator must
ensure that the amount of used memory would not exceed
Xmem.

Feedback possibility. Often while implementing
certain algorithm we need to use a feedback feature in the
system. In traditional Kahn process network such
configuration is not possible because the process would
block waiting for data from the channel where data will be
available only after the series of calculations. To solve this
problem we introduce the default value. This conflicts
Kahn process network determinism feature but helps
preventing deadlocks and enables feedback possibility. For
example, we have an implementation of IIR filter (see
Fig.2).

sum2 in sum1

vel

 out

san1 san2

Fig. 2. IIR filter Kahn process network model

Initially node in writes the first packet into his output
channel. Node sum1 reads the packet and tries to read the
data from the other input channel. If there is no data in this
channel the whole network operation is blocked, because
the rest of the nodes also do not get the data. At that time
node in can overflow his output channel because reading
from is channel has stopped. To ensure further network
operation node’s sum1 execution must be continued even if
there is no data in the input channel.

After a series of attempts to read the data node uses the
default value. For example IIR filter can use 0.

Default value helps to prevent deadlocks but
inappropriate use of this value can cause wrong calculation
results. Avoiding this we need to introduce sufficient node
execution blocking periods.

Dynamic network reorganization. The computation
resources among network nodes must be properly allocated
to ensure continuous real time data flow processing. The
mechanism for changing nodes priorities is necessary. This

ISSN 1392-2114 ULTRAGARSAS, Nr.4(45). 2002.

 45

mechanism would dynamically change nodes priority
according to the intensity of input data and resources
needed for computations. This would enable optimal use of
available resources.

During network operation one can change not only
network parameters but also reorganize the whole network
configuration. For example we have seven-node IIR filter
Kahn process network model (see Fig. 2). Nodes sum1 and
sum2, nodes san1 and san2 can be grouped. This grouping
is quite straightforward because their operations are the
same. The new network model is demonstrated in Fig. 3.

 sum in

vel

 out

 san

Fig. 3. Modified IIR filter Kahn process network model

Such modifications to network configuration may
increase computation time but reduce amount of needed
memory and free some computation resources.

Implementing and analyzing modifications
During Kahn process network model investigation

personal computer (AMD Duron 700MHz, 320MB RAM,
20GB HDD) with software (Ms Windows 2000 SP2, Ms
Development Environment v.7.0.9254, Ms Visual C#.NET
7.0) was used.

FIR filter. To demonstrate Kahn process network
operation 11 taps FIR filter was implemented. This filter
performs filtering of two summed sinusoids (see Fig. 4).

 san digp

x700

x1700

po11 sum out

 b x11

Fig. 4. FIR1 filter Kahn process network model

In this implementation FIR filter is expanded into
small operations. Network nodes x11, po11 and b do not
perform any operations with data only its transmission.
Reducing the number of network nodes FIR filter was
implemented using the scheme presented in Fig. 5.

 sum digp

x700

x1700

 san out

Fig. 5. FIR2 filter Kahn process network model

In this network nodes x700, x1700, digp and out
remain the same. Node san performs grouping of packets
and multiplication by coefficients and node sum sums and
gives the results to the node out.

IIR filter. IIR filter was implemented using two
different Kahn process network structures: with minimum
number of network nodes and expanding filter taps. IIR
filter was chosen for implementation to test feedback
mechanism.

3 taps IIR filter Kahn process network model with
minimum number of nodes is presented in Fig. 6.

 out digp

x700

x1700

 sum

 san a

Fig. 6. IIR1 filter Kahn process network model

The expanded IIR filter Kahn process network model
is presented in Fig. 7. Separate nodes sum and san are used
for every tap. New node mux is introduced which spreads
data among the nodes. Node a is liquidated and his
functions are passed to nodes san1.. san3.

sum2 digp

x700

x1700

sum1 sum3 out

san1 san3 san2

mux

Fig. 7. IIR2 filter Kahn process network model

ISSN 1392-2114 ULTRAGARSAS, Nr.4(45). 2002.

 46

Results of network observation. During the
experiment two FIR and two IIR filters Kahn process
network modifications were implemented which perform
filtering of two summed sinusoids. During modeling fixed
amount of data was used to enable execution time
measurement. Network nodes ended execution only when
processing of all the data was finished.

Execution time variation according to channel length
changes was observed during network operation. Channel
lengths were changed from 50 to 600 packets. Change was
performed manually. Results are presented in Fig. 8.

The quantity of packets transmitted trough channels
was also observed during network operation.

0
10
20
30
40
50
60
70
80
90

50 100 200 300 400 500 600
Channel length, packets

Ex
ec

ut
io

n
tim

e,
 s

FIR1
FIR2
IIR1
IIR2

Fig. 8. Execution time dependence on channel length

Kahn process network models of the filters were
executed and observed using personal computer, thus
nodes were executed sequentially switching among them.

Dynamic network parameters change. Dynamic
network parameters change was performed during network
operation. The channel length was changed according to
the number of packets transmitted. This number was
estimated during network operation observation. The
results are displayed in Fig. 9.

0

5

10

15

20

25

30

5 10 20 40
Channel length, %

Ex
ec

ut
io

n
tim

e,
 s

FIR1
FIR2
IIR1
IIR2

Fig 9. Execution time dependence on channel length (when the
particular percent of the whole length is allocated)

While analyzing the results one can notice that
network execution time reduces when channel length is
increased. The best results outcome when channels get
maximum amount of memory needed for computations.

If Kahn process network model would be implemented
in parallel system, changing channel length would cause
quite different results.

Conclusion
In DSP systems design and implementation very

important factor is project realization time. Various tools
and methods are created to reduce this time. Kahn process
network model, discussed in this paper, is one of such
methods.

In analyzed digital signal processing systems modeling
tools Kahn process network is widely used. But the
implementation of the model usually uses classic model.
Such use limits the possibilities of adapting Kahn process
network in complicated real time systems.

In this paper Kahn process network operation
observation parameters were determined and their
changing strategies according to the systems needs were
described.

System’s Kahn process network can be modeled using
personal computer. This helps in finding critical network
operation points. Performance can be improved
dynamically changing network parameters. Performing
computations in sequential system the great number of
network nodes negatively influences execution time.
Channels lengths must be increased to reduce idle time of
the network operation.

The results of our work can be used implementing real
systems. Network operation observation results outline
memory, computation and communication resources thus
facilitating the hardware platform selection.
References

1. Marven C., Ewers G. A Simple Approach to Digital Signal
Processing. – New York: Wiley-Interscience Publication. 1996.

2. Kienhuis B., Rijpkema E., Deprettere E. F. Campaan: Deriving
Process Networks from Matlab for Embedded Signal Processing
Architectures. 8th International Workshop on Hardware/Software
Codesign. San Diego. 2000. 05. P.425-431.

3. Davis J., Hylands C., Kienhuis B. Ptolemy II: Heterogeneous
Concurrent Modeling and Design in Java. Berkeley: The Regents of
the University of California. 2001.

4. Stevens R., Wan M., Laramie P. Implementation of Process
Networks in Java. 1997. www.ait.url.navy.mil/pgmt/Pnpaper.pdf

5. Lavagno L. Static Scheduling for Embedded Systems. University of
Udine. 2001. http://tima.imag.fr/MPSOC/2001/lavagno.pdf

6. Žvironas A., Kazanavičius E. Partitioning of DSP tasks to Kahn
network. KTU. Kaunas. Ultragarsas. 2002. Nr. 2(43).

7. Lee E. A., Parks T. M. Data flow process network. Proceeding of
the IEEE. May 1995. Vol.83. No.5. P.773-799.

J. Čeponis, E. Kazanavičius, A. Mikuckas

DSP sistemų analizė ir projektavimas naudojant Kahno procesų
tinklus

Reziumė

Darbe pateiktas Kahno tinklo procesų metodas ir jo taikymas DSP
architektūrų analizei ir projektavimui, sprendžiant skaitmeninių signalų
apdorojimo uždavinius. Pasiūlyto naujos Kahno tinklo modifikacijos ir
patikrintas jų efektyvumas skaitmeninio filtravimo uždavinių klasei.
Pasiūlytu metodu galima spręsti signalų apdorojimo uždavinius
skirtingose DSP architektūrose.

Pateikta spaudai 2002 12 19

